adamw.py 26.3 KB
Newer Older
Z
zhaoyingli 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import warnings
from collections import defaultdict
17
from collections.abc import Callable
18

M
MRXLT 已提交
19
import paddle
20

21
from .. import _C_ops
22
from ..fluid import core, framework, unique_name
23 24 25
from ..fluid.dygraph import base as imperative_base
from ..fluid.framework import Parameter, Variable
from ..fluid.layer_helper import LayerHelper
26
from ..nn.clip import GradientClipBase
27 28 29
from .lr import LRScheduler
from .optimizer import Optimizer

30 31
__all__ = []

M
MRXLT 已提交
32

33
class AdamW(Optimizer):
34
    r"""
35
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
36 37 38 39 40 41 42
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

43
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
44

45
        moemnt\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
46

47
        learning\_rate & = learning\_rate *
48
            \frac{\sqrt{1 - {\beta}_2^t}}{1 - {beta}_1^t}
M
MRXLT 已提交
49

50
        param\_out & = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
M
MRXLT 已提交
51 52 53


    Args:
54 55
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
56 57 58 59 60
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
61
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
62 63 64 65 66 67 68 69
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
70
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
71
        lr_ratio (function|None, optional): If it is not None,
72 73 74
            the learning rate will be updated with layerwise learning rate ratio.
            Otherwise, the learning rate is the original.
            Default: None.
M
MRXLT 已提交
75
        apply_decay_param_fun (function|None, optional): If it is not None,
76
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
77
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
78
            Default: None.
79 80 81
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
82 83 84 85 86 87 88 89
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
90
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
91 92 93
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
94 95 96 97 98
    **Notes**:
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
99

M
MRXLT 已提交
100 101 102
            import paddle

            linear = paddle.nn.Linear(10, 10)
103
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
104 105 106 107 108 109
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

110
            opt = paddle.optimizer.AdamW(learning_rate=0.1,
M
MRXLT 已提交
111 112 113 114 115
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
116 117
            opt.step()
            opt.clear_grad()
M
MRXLT 已提交
118

119 120 121 122 123 124 125 126

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
127
            opt = paddle.optimizer.AdamW(
128 129 130 131 132 133 134 135 136 137
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
138
                beta1=0.9)
139
            out.backward()
140 141
            opt.step()
            opt.clear_grad()
142

M
MRXLT 已提交
143 144
    """

145 146 147 148 149
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=0.01,
        lr_ratio=None,
        apply_decay_param_fun=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        name=None,
    ):
M
MRXLT 已提交
165 166 167 168 169 170 171 172 173 174
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
175 176 177
        if not isinstance(weight_decay, float) and not isinstance(
            weight_decay, framework.Variable
        ):
178
            raise TypeError("weight_decay should be float or Tensor.")
179 180
        if lr_ratio is not None:
            assert isinstance(lr_ratio, Callable)
181 182 183 184
            if (
                not core.is_compiled_with_cuda()
                and not core.is_compiled_with_xpu()
            ):
185
                raise NotImplementedError(
186
                    "'lr_ratio' is unimplemented in CPU, and NPU"
187
                )
188

189 190 191 192 193 194 195
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
196 197 198 199
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
200 201 202 203
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
204 205
                    " as list of dict"
                )
206 207 208 209 210 211 212 213 214 215 216 217 218
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

        self._name = name
        if framework._non_static_mode():
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )

        if not isinstance(learning_rate, (float, LRScheduler)):
            raise TypeError(
219 220 221
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
222 223 224 225 226 227 228 229 230 231 232
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )

        self._dtype = None
        # Infer the dtype form parameter
        if self._parameter_list:
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
233 234 235
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype

        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
M
MRXLT 已提交
253

R
Roc 已提交
254
        self.type = "adamw"
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        self._learning_rate = learning_rate
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._weight_decay = weight_decay
        self._grad_clip = grad_clip
        self._lr_ratio = lr_ratio
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
        self._multi_precision = multi_precision
        self._master_weights = {}

        self._default_dict = {
            'weight_decay': weight_decay,
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
274
            'grad_clip': grad_clip,
275 276 277 278 279 280 281 282
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
R
Roc 已提交
283

284 285 286
        self._use_multi_tensor = None
        self.regularization = None
        self._auxiliary_vars = {}
R
Roc 已提交
287 288 289 290 291 292 293 294 295 296

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

297
    def _add_param_group(self, param_group):
298
        """
299 300
        Add a param group to parameter_list.

301
        Args:
302 303
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
304
        """
305 306 307 308 309 310
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
311 312
                "but received set, please use list instead."
            )
313 314
        else:
            param_group['params'] = list(params)
315

316 317 318 319 320 321 322 323 324 325
        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
326 327
                "some parameters appear in more than one parameter group"
            )
328

329 330
        for param in param_group['params']:
            param.optimize_attr['learning_rate'] = param_group.get(
331 332
                'learning_rate', 1.0
            )
333 334 335 336 337 338

        self._param_groups.append(param_group)

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
339
        else:
340 341 342 343
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
344
            var = paddle.static.create_global_var(
345 346 347 348 349 350
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
351
            block = self.helper.startup_program.global_block()
352 353 354 355 356 357 358 359 360
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
361 362 363 364 365 366 367 368 369 370 371 372 373
            self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
374 375
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
376 377 378 379
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
380
        target_name = target_param.name
381 382 383 384
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
385 386
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
387 388 389
                    name, target_name
                )
            )
390 391 392 393
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
394
        if self._is_dtype_fp16_or_bf16(acc_dtype):
395 396 397 398 399 400 401
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
402 403 404
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
405
            shape=[1],
406 407 408
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
409 410 411 412
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
413 414 415
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
416
            shape=[1],
417 418 419
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
420 421 422 423 424 425 426 427

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
428
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
429 430 431
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
432
            if (
433
                self._is_dtype_fp16_or_bf16(p.dtype)
434 435
                and not self._multi_precision
            ):
436
                warnings.warn(
437
                    "Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
438 439 440
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
            self._add_moments_pows(p)
441

W
WangXi 已提交
442
    def _append_optimize_op(self, block, param_and_grad):
R
Roc 已提交
443 444 445 446 447 448 449
        assert isinstance(block, framework.Block)
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad

        # Whether we should do weight decay for the parameter.
        with_decay = True
450 451 452 453
        if (
            self._apply_decay_param_fun is not None
            and not self._apply_decay_param_fun(param.name)
        ):
R
Roc 已提交
454 455
            with_decay = False

456 457 458 459 460 461 462 463 464 465 466 467
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )
468 469
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
470 471 472 473 474 475
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
R
Roc 已提交
476 477
        lr = self._create_param_lr(param_and_grad)

Z
zhaoyingli 已提交
478
        # create the adamw optimize op
479
        if framework.in_dygraph_mode():
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
            lr_ratio_ = (
                1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0])
            )

            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
496

497
            found_inf = self._get_auxiliary_var('found_inf')
498 499 500 501 502 503 504 505 506
            _, _, _, _, _, _ = _C_ops.adamw_(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
507
                found_inf,
508 509 510 511 512 513 514 515 516 517 518
                _beta1,
                _beta2,
                self._epsilon,
                lr_ratio_,
                self._weight_decay,
                with_decay,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
R
Roc 已提交
519 520
            return None
        else:
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "LearningRate": [lr],
                "Moment1": [moment1],
                "Moment2": [moment2],
                "Beta1Pow": [beta1_pow_acc],
                "Beta2Pow": [beta2_pow_acc],
            }

            # Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
            found_inf = self._get_auxiliary_var('found_inf')

            if found_inf:
                inputs['SkipUpdate'] = found_inf

            outputs = {
                "ParamOut": [param_and_grad[0]],
                "Moment1Out": [moment1],
                "Moment2Out": [moment2],
                "Beta1PowOut": [beta1_pow_acc],
                "Beta2PowOut": [beta2_pow_acc],
            }
            attrs = {
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000,
                "multi_precision": find_master,
                "with_decay": with_decay,
                "coeff": self._weight_decay,
                "lr_ratio": 1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0]),
            }

            if isinstance(self._beta1, Variable):
                inputs['Beta1Tensor'] = self._beta1
            else:
                attrs['beta1'] = self._beta1
            if isinstance(self._beta2, Variable):
                inputs['Beta2Tensor'] = self._beta2
            else:
                attrs['beta2'] = self._beta2
            if isinstance(self._epsilon, Variable):
                inputs['EpsilonTensor'] = self._epsilon
            else:
                attrs['epsilon'] = self._epsilon

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            adamw_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
R
Roc 已提交
579

580
            return adamw_op
M
MRXLT 已提交
581 582 583

    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
584

585 586 587 588 589 590 591 592 593 594 595 596 597
    @imperative_base.no_grad
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
                a = paddle.rand([2,13], dtype="float32")
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
                opt = paddle.optimizer.AdamW(learning_rate = 0.01,
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                opt.step()
                opt.clear_grad()
        """
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    if framework.in_dygraph_mode():
617 618 619 620 621
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
622 623 624 625
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
626 627 628 629 630
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
631 632 633 634 635
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    params_grads.append((param, grad_var))

636 637 638
            optimize_ops = self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads
            )
639 640 641 642 643 644 645 646 647 648
        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        if framework.in_dygraph_mode():
649 650 651 652 653
                            if (
                                hasattr(grad_var, "is_selected_rows")
                                and grad_var.is_selected_rows()
                                and self.regularization is not None
                            ):
654 655 656 657
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        else:
658 659 660 661 662
                            if (
                                hasattr(grad_var, "_is_sparse")
                                and grad_var._is_sparse()
                                and self.regularization is not None
                            ):
663 664 665 666 667
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
668 669 670 671 672
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads
                )
673

674
    def _update_param_group(self, parameters):
675 676 677
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
678 679 680 681 682 683
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
        self._weight_decay = parameters.get(
            'weight_decay', self._default_dict['weight_decay']
        )
684
        parameters = parameters.get('params')
685

686
        return parameters