loss.py 153.7 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
24
from ...tensor.manipulation import reshape
25
from ...fluid.layer_helper import LayerHelper
26
from ...fluid.framework import _varbase_creator
27
from ...static import Variable
28
from paddle.utils import deprecated
29
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
30
from paddle import in_dynamic_mode
Y
yangguohao 已提交
31
from paddle.framework import core, _non_static_mode
L
Ligoml 已提交
32 33 34 35 36 37
from ...fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _non_static_mode,
    _current_expected_place,
)
38

39 40
__all__ = []

41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
L
Ligoml 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
104 105 106 107 108 109

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
L
Ligoml 已提交
110 111
        label, axis=reduce_dim
    )
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
154
        return _C_ops.log_loss(input, label, epsilon)
155 156 157 158 159 160 161

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

L
Ligoml 已提交
162 163 164 165 166 167
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
168 169 170
    return loss


L
Ligoml 已提交
171 172 173 174 175 176 177 178 179
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    r"""

    This operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
200
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
201 202 203 204

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
205
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
206 207 208 209

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
210 211 212
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`, 
            Label is a ``Tensor``  in the same shape with :attr:`logits`. 
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor`` 
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
                                      if :attr:`soft_label` is set to :attr:`False`. 
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
                                              when :attr:`soft_label` is :attr:`False` 
                                              and GPU is used. When :attr:`soft_label` 
                                              is :attr:`True` or CPU is used, the 
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
        axis (int, optional): The index of dimension to perform softmax calculations. It 
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
268
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
269 270 271 272 273 274 275 276 277 278 279
                logits,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                numeric_stable_mode,
                'axis',
                axis,
            )
280 281
        else:
            if in_dygraph_mode():
282
                softmax, loss = _C_ops.cross_entropy_with_softmax(
L
Ligoml 已提交
283 284 285 286 287 288 289 290
                    logits,
                    label,
                    soft_label,
                    True,
                    numeric_stable_mode,
                    ignore_index,
                    axis,
                )
291
            if _in_legacy_dygraph():
292
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
293 294 295 296 297 298 299 300 301 302 303
                    logits,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                )
304 305 306 307 308 309 310 311 312
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
L
Ligoml 已提交
313
        'axis': axis,
314 315 316 317 318 319 320 321 322
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
L
Ligoml 已提交
323 324 325 326 327 328
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits, 'Label': label},
        outputs=outputs,
        attrs=attrs,
    )
329 330 331 332 333 334 335 336

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
L
Ligoml 已提交
337 338
    """

339 340 341
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
L
Ligoml 已提交
342

343 344
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
L
Ligoml 已提交
345

346
    Args:
L
Ligoml 已提交
347
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
348
                        the data type is float32 or float64.
L
Ligoml 已提交
349
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
350 351 352 353
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

L
Ligoml 已提交
354

355 356
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
L
Ligoml 已提交
357

358 359 360
    Examples:

      .. code-block:: python
L
Ligoml 已提交
361

362
          import paddle
L
Ligoml 已提交
363

364
          DATATYPE = "float32"
L
Ligoml 已提交
365

366 367 368
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
L
Ligoml 已提交
369

370 371
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
L
Ligoml 已提交
372

373
    """
L
Ligoml 已提交
374 375 376 377 378 379 380 381 382
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
383 384 385 386 387 388
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

L
Ligoml 已提交
389 390 391
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
392 393
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

L
Ligoml 已提交
394 395 396
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
397 398
    l2loss = l2loss * Beta * l2_reg

L
Ligoml 已提交
399 400 401 402 403 404
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
428 429
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
430 431 432 433 434 435 436 437 438 439 440 441 442

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
443
    if in_dygraph_mode():
444 445
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
446 447
        return square_out
    elif _in_legacy_dygraph():
448 449
        minus_out = _legacy_C_ops.elementwise_sub(input, label)
        square_out = _legacy_C_ops.square(minus_out)
450 451
        return square_out

L
Ligoml 已提交
452 453 454 455 456 457
    check_variable_and_dtype(
        input, "input", ['float32', 'float64'], 'square_error_cost'
    )
    check_variable_and_dtype(
        label, "label", ['float32', 'float64'], 'square_error_cost'
    )
458 459
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
460 461 462 463 464
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input], 'Y': [label]},
        outputs={'Out': [minus_out]},
    )
465 466

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
467 468 469
    helper.append_op(
        type='square', inputs={'X': [minus_out]}, outputs={'Out': [square_out]}
    )
470 471 472
    return square_out


L
Ligoml 已提交
473 474 475 476 477 478 479 480
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
L
Ligoml 已提交
515
        Tuple:
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

        distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
        sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

L
Ligoml 已提交
557 558 559 560 561 562
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
563 564
        input = erased_input

L
Ligoml 已提交
565 566 567 568 569 570
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
571 572
        label = erased_label

Z
zhiboniu 已提交
573
    if in_dygraph_mode():
L
Ligoml 已提交
574 575 576
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
577

578 579 580 581 582 583 584 585
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
L
Ligoml 已提交
586 587 588 589 590 591
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
592 593 594 595

    return edit_distance_out, sequence_num


L
Ligoml 已提交
596 597 598
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

657 658
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
659
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
660
            print(output)  # [0.65537095]
661 662 663 664 665

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
L
Ligoml 已提交
666 667 668
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
669

J
Jiabin Yang 已提交
670
    if in_dygraph_mode():
671
        out = _C_ops.bce_loss(input, label)
672
        if weight is not None:
673
            out = _C_ops.multiply(out, weight, 'axis', -1)
674 675

        if reduction == 'sum':
676
            return _C_ops.sum(out, [], None, False)
677

678
        elif reduction == 'mean':
679
            return _C_ops.mean_all(out)
680 681 682
        else:
            return out
    else:
J
Jiabin Yang 已提交
683
        if _in_legacy_dygraph():
684
            out = _legacy_C_ops.bce_loss(input, label)
J
Jiabin Yang 已提交
685
            if weight is not None:
686
                out = _legacy_C_ops.elementwise_mul(out, weight, 'axis', -1)
J
Jiabin Yang 已提交
687
            if reduction == 'sum':
L
Ligoml 已提交
688 689 690
                return _legacy_C_ops.reduce_sum(
                    out, 'dim', [0], 'keep_dim', False, "reduce_all", True
                )
J
Jiabin Yang 已提交
691
            elif reduction == 'mean':
692
                return _legacy_C_ops.mean(out)
J
Jiabin Yang 已提交
693 694 695
            else:
                return out
        else:
L
Ligoml 已提交
696 697 698 699 700 701
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'binary_cross_entropy'
            )
            check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'binary_cross_entropy'
            )
J
Jiabin Yang 已提交
702 703 704 705

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
706 707 708 709 710 711 712 713
            helper.append_op(
                type='bce_loss',
                inputs={
                    'X': [input],
                    'Label': [label],
                },
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
714 715 716 717 718 719 720

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
L
Ligoml 已提交
721 722
                        "The weight is not a Tensor, please convert to Tensor."
                    )
J
Jiabin Yang 已提交
723 724 725 726 727 728 729

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
730 731


L
Ligoml 已提交
732 733 734
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
735
    r"""
736 737 738 739 740 741 742 743 744 745 746 747 748
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
749
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
750

751
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
752 753

    .. math::
754
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
755

N
Noel 已提交
756
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
757 758 759
    we reformulate the loss as follows:

    .. math::
760
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
805

806 807
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
808
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
809
            print(output)  # [0.45618808]
810 811 812 813 814 815

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
L
Ligoml 已提交
816 817
            % reduction
        )
818

819
    if in_dygraph_mode():
L
Ligoml 已提交
820 821 822 823 824 825 826 827 828
        one = _C_ops.full(
            [1],
            float(1.0),
            core.VarDesc.VarType.FP32,
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
829
        if pos_weight is not None:
830
            log_weight = _C_ops.add(
L
Ligoml 已提交
831 832
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
833
            out = _C_ops.multiply(out, log_weight)
834
        if weight is not None:
835
            out = _C_ops.multiply(out, weight)
836 837

        if reduction == "sum":
838
            return _C_ops.sum(out, [], None, False)
839
        elif reduction == "mean":
840
            return _C_ops.mean_all(out)
H
hong 已提交
841
        else:
842 843 844
            return out
    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
L
Ligoml 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
        _legacy_C_ops.fill_constant(
            one,
            'value',
            float(1.0),
            'force_cpu',
            False,
            'dtype',
            one.dtype,
            'str_value',
            '1.0',
            'shape',
            [1],
        )
858
        out = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
859
        if pos_weight is not None:
860 861
            log_weight = _legacy_C_ops.elementwise_add(
                _legacy_C_ops.elementwise_mul(
L
Ligoml 已提交
862 863 864 865
                    label, _legacy_C_ops.elementwise_sub(pos_weight, one)
                ),
                one,
            )
866
            out = _legacy_C_ops.elementwise_mul(out, log_weight)
867
        if weight is not None:
868
            out = _legacy_C_ops.elementwise_mul(out, weight)
869 870

        if reduction == "sum":
871
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
872
        elif reduction == "mean":
873
            return _legacy_C_ops.mean(out)
874 875 876
        else:
            return out

L
Ligoml 已提交
877 878 879 880 881 882 883 884 885 886 887 888
    check_variable_and_dtype(
        logit,
        'logit',
        ['float32', 'float64'],
        'binary_cross_entropy_with_logits',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float32', 'float64'],
        'binary_cross_entropy_with_logits',
    )
889 890 891 892
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

893
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
L
Ligoml 已提交
894 895
        logit, label, name=sigmoid_name
    )
896

Z
zhiboniu 已提交
897
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
898
    if pos_weight is not None:
L
Ligoml 已提交
899 900 901 902 903 904
        check_variable_and_dtype(
            pos_weight,
            'pos_weight',
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
905
        log_weight = paddle.add(
L
Ligoml 已提交
906 907 908 909 910
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one
        )
        pos_weight_name = (
            name if reduction == 'none' and weight is None else None
        )
911 912 913
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
L
Ligoml 已提交
914 915 916 917 918 919
        check_variable_and_dtype(
            weight,
            'weight',
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
920 921 922 923 924 925 926 927 928 929
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


L
Ligoml 已提交
930 931 932 933 934 935 936 937 938 939 940
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
999 1000 1001 1002 1003
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
1004 1005 1006
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
1007 1008 1009 1010
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
1011 1012

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
1013 1014 1015 1016
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
1017
    """
1018
    if in_dygraph_mode():
L
Ligoml 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        out, _, _ = _C_ops.hierarchical_sigmoid(
            input,
            weight,
            label,
            path_table,
            path_code,
            bias,
            num_classes,
            is_sparse,
            0,
            [],
            [],
            [],
            is_sparse,
        )
1034 1035 1036
        return out
    elif _in_legacy_dygraph():
        out, _, _ = _legacy_C_ops.hierarchical_sigmoid(
L
Ligoml 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            input,
            weight,
            label,
            path_table,
            path_code,
            bias,
            'num_classes',
            num_classes,
            'is_sparse',
            is_sparse,
            'remote_prefetch',
            is_sparse,
        )
1050 1051
        return out

L
Ligoml 已提交
1052 1053 1054
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
    )
1055
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
L
Ligoml 已提交
1056 1057 1058
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
    )
1059
    if bias is not None:
L
Ligoml 已提交
1060 1061 1062
        check_variable_and_dtype(
            bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
        )
1063
    if path_table is not None:
L
Ligoml 已提交
1064 1065 1066
        check_variable_and_dtype(
            path_table, 'path_table', ['int64'], 'hsigmoid_loss'
        )
1067
    if path_code is not None:
L
Ligoml 已提交
1068 1069 1070
        check_variable_and_dtype(
            path_code, 'path_code', ['int64'], 'hsigmoid_loss'
        )
1071 1072 1073 1074

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
L
Ligoml 已提交
1075
        "remote_prefetch": is_sparse,
1076 1077 1078 1079 1080 1081 1082 1083
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
L
Ligoml 已提交
1084
        "Label": label,
1085 1086 1087 1088 1089 1090 1091
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

L
Ligoml 已提交
1092 1093 1094
    helper.append_op(
        type="hierarchical_sigmoid", inputs=inputs, outputs=outputs, attrs=attrs
    )
1095 1096 1097
    return out


1098
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1099
    r"""
1100
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1101 1102 1103 1104 1105 1106
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1107
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
1108 1109 1110 1111 1112 1113


    where z_i is given by:

    .. math::

1114 1115
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
1116
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
1117
        \end{array} \right.
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1131
        delta (float, optional): Specifies the hyperparameter delta to be used.
1132 1133 1134 1135 1136 1137 1138
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1139
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
1151
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1152
            print(output)
1153
    """
L
Ligoml 已提交
1154 1155 1156 1157 1158 1159
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss'
    )
1160

1161
    if in_dygraph_mode():
1162
        out, residual = _C_ops.huber_loss(input, label, delta)
1163 1164 1165
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1166 1167
            dtype=helper.input_dtype()
        )
1168
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1169 1170 1171 1172 1173 1174 1175 1176
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1177 1178 1179 1180

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
L
Ligoml 已提交
1181 1182
            " 'none', but received %s, which is not allowed." % reduction
        )
1183 1184 1185
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1186
        return paddle.mean(out)
1187
    elif reduction == 'sum':
1188
        return paddle.sum(out)
1189 1190


L
Ligoml 已提交
1191 1192 1193
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1194
    r"""
1195

1196
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1197

1198
    .. math::
1199
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1216
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1217 1218 1219 1220
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
Ligoml 已提交
1221
    Returns:
1222
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1223 1224 1225 1226 1227

    Examples:

        .. code-block:: python

1228 1229
            import paddle

Z
Zhong Hui 已提交
1230 1231 1232
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1233
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1234
            print(loss) # [0.75]
1235
    """
1236 1237 1238
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
1239 1240
            "received %s, which is not allowed." % reduction
        )
1241
    if in_dygraph_mode():
1242 1243
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1244 1245
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1246 1247
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1248
        if reduction == 'sum':
1249
            return _C_ops.sum(out, [], None, False)
1250
        elif reduction == 'mean':
1251
            return _C_ops.mean_all(out)
1252 1253
        return out
    elif _in_legacy_dygraph():
1254 1255
        out = _legacy_C_ops.elementwise_sub(other, input)
        out = _legacy_C_ops.elementwise_mul(out, label)
1256 1257
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1258 1259
            out = _legacy_C_ops.elementwise_add(out, margin)
        out = _legacy_C_ops.relu(out)
1260
        if reduction == 'sum':
1261
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
1262
        elif reduction == 'mean':
1263
            return _legacy_C_ops.mean(out)
1264 1265 1266
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
L
Ligoml 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss'
    )
    check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'margin_rank_loss'
    )
1276

1277
    out = paddle.subtract(other, input)
1278
    out = paddle.multiply(out, label)
1279 1280 1281

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1282
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1283 1284 1285 1286 1287
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
L
Ligoml 已提交
1288 1289 1290
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out}
        )
1291 1292 1293 1294
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
L
Ligoml 已提交
1295 1296 1297 1298 1299 1300
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs,
        )
1301 1302 1303
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
L
Ligoml 已提交
1304 1305 1306 1307 1308 1309
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={},
        )
1310 1311 1312
        return result_out


1313
def l1_loss(input, label, reduction='mean', name=None):
1314
    r"""
1315
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1316

1317
    If `reduction` set to ``'none'``, the loss is:
1318 1319

    .. math::
1320
        Out = \lvert input - label \rvert
1321

1322
    If `reduction` set to ``'mean'``, the loss is:
1323 1324

    .. math::
1325
        Out = MEAN(\lvert input - label \rvert)
1326

1327
    If `reduction` set to ``'sum'``, the loss is:
1328 1329

    .. math::
1330
        Out = SUM(\lvert input - label \rvert)
1331

1332

1333
    Parameters:
N
Noel 已提交
1334 1335
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1336
        reduction (str, optional): Indicate the reduction to apply to the loss,
1337
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1338 1339 1340
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1341 1342
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1343

1344
    Returns:
1345 1346 1347
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1348

1349 1350
    Examples:
        .. code-block:: python
N
Noel 已提交
1351

1352
            import paddle
1353

1354 1355
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1356

1357
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1358
            print(l1_loss.numpy())
1359 1360
            # [0.35]

1361
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1362
            print(l1_loss.numpy())
1363 1364 1365
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1366
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1367
            print(l1_loss.numpy())
1368 1369 1370 1371 1372
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
1373 1374
            "received %s, which is not allowed." % reduction
        )
1375

1376
    if in_dygraph_mode():
1377 1378
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1379
        if reduction == 'mean':
1380
            return _C_ops.mean_all(unreduced)
1381
        elif reduction == 'sum':
1382
            return _C_ops.sum(unreduced, [], None, False)
1383 1384
        else:
            return unreduced
1385
    elif _in_legacy_dygraph():
L
Ligoml 已提交
1386 1387 1388
        unreduced = _elementwise_op_in_dygraph(
            input, label, axis=-1, act='abs', op_name='elementwise_sub'
        )
1389
        if reduction == 'mean':
1390
            return _legacy_C_ops.mean(unreduced)
1391
        elif reduction == 'sum':
L
Ligoml 已提交
1392 1393 1394
            return _legacy_C_ops.reduce_sum(
                unreduced, 'dim', [0], 'keep_dim', False, 'reduce_all', True
            )
1395 1396 1397
        else:
            return unreduced

L
Ligoml 已提交
1398 1399 1400 1401 1402 1403
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
    )
1404 1405

    if reduction == 'sum':
1406
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1407 1408
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1409
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1410 1411
        return paddle.mean(unreduced, name=name)
    else:
L
Ligoml 已提交
1412 1413 1414 1415 1416 1417 1418 1419
        return paddle.fluid.layers.elementwise_sub(
            input, label, act='abs', name=name
        )


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1434 1435
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1450

1451 1452 1453 1454
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1455 1456 1457 1458 1459
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1460
                log_out = log_softmax(input)
1461
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1462
                result = nll_loss(log_out, label)
1463
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1464 1465 1466 1467
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
L
Ligoml 已提交
1468 1469
            "'none', but received %s, which is not allowed." % reduction
        )
1470 1471 1472 1473

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1474
        raise ValueError(
L
Ligoml 已提交
1475 1476
            'Expected 2 or more dimensions (got {})'.format(input_dims)
        )
1477 1478
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1479 1480
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1481 1482
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1483
            out_shape = [n] + input_shape[2:]
L
Ligoml 已提交
1484 1485 1486
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1487
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1488
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1489
        return out
1490
    elif _in_legacy_dygraph():
1491
        if input_dims != 2 and input_dims != 4:
L
Ligoml 已提交
1492 1493 1494
            input, _ = _legacy_C_ops.reshape2(
                input, None, 'shape', [n, c, 1, -1]
            )
1495
            label, _ = _legacy_C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1496
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1497

L
Ligoml 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506
        out, total_weight = _legacy_C_ops.nll_loss(
            input,
            label,
            weight,
            'ignore_index',
            ignore_index,
            'reduction',
            reduction,
        )
1507
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1508
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', out_shape)
1509 1510 1511 1512 1513 1514 1515 1516 1517
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1518 1519
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

L
Ligoml 已提交
1530 1531 1532
    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
    )
1533 1534 1535 1536
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1537 1538


1539
def kl_div(input, label, reduction='mean', name=None):
1540
    r"""
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1552
    the same shape as input, loss in each point is calculated
1553
    separately and no reduction is applied.
1554

1555 1556
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1557

1558 1559
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1560 1561

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1562 1563 1564 1565
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1566
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1567 1568 1569 1570 1571 1572 1573 1574 1575
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1576
        name(str, optional): Name for the operation (optional, default is None). For more information,
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
1588

1589 1590 1591 1592
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
1593
            # 'batchmean' reduction, loss shape will be [1]
1594 1595
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='batchmean')
L
LielinJiang 已提交
1596
            # shape=[1]
1597

1598
            # 'mean' reduction, loss shape will be [1]
1599 1600
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='mean')
1601 1602 1603
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1604 1605
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='sum')
1606 1607 1608
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1609 1610
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='none')
1611 1612 1613
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1614
    # ugly type promotion
L
Ligoml 已提交
1615 1616 1617 1618
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1619
        input = paddle.cast(input, 'float64')
L
Ligoml 已提交
1620 1621 1622 1623
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1624
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1625

1626
    if in_dygraph_mode():
1627
        out = _C_ops.kldiv_loss(input, label, 'none')
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
    elif _in_legacy_dygraph():
1638
        out = _legacy_C_ops.kldiv_loss(input, label, 'reduction', 'none')
1639 1640 1641 1642 1643 1644 1645 1646
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1647 1648 1649 1650
        return out

    helper = LayerHelper('kl_div', **locals())

1651 1652
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1653 1654 1655
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
1656 1657 1658 1659 1660 1661
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input, 'Target': label},
        outputs={'Loss': loss},
        attrs={'reduction': 'none'},
    )
1662 1663 1664 1665 1666 1667 1668 1669

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1670 1671 1672
    return loss


1673
def mse_loss(input, label, reduction='mean', name=None):
1674
    r"""
1675
    Accept input predications and label and returns the mean square error.
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1705
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1706

1707 1708 1709
    Examples:

        .. code-block:: python
1710

1711 1712
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1713 1714
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1715
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1716
            print(output)
1717 1718 1719 1720 1721 1722 1723
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
L
Ligoml 已提交
1724 1725
            "but received {}.".format(reduction)
        )
1726

Z
zhiboniu 已提交
1727
    if not in_dynamic_mode():
L
Ligoml 已提交
1728 1729 1730 1731 1732 1733
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1734 1735

    if reduction == 'none':
1736
        return paddle.square(paddle.subtract(input, label), name=name)
1737
    elif reduction == 'mean':
L
Ligoml 已提交
1738 1739 1740
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1741
    else:
L
Ligoml 已提交
1742 1743 1744
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1745 1746


L
Ligoml 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1756 1757
    """

1758 1759 1760
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1761 1762 1763
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1764
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1765 1766 1767 1768 1769
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1770
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1771

1772 1773
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1813 1814 1815 1816
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1817

1818 1819 1820 1821
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1822
                reduction='none')
1823
            print(loss)  #[3.9179852 2.9076521]
1824

1825 1826 1827 1828 1829
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1830
            print(loss)  #[1.1376063]
1831 1832 1833

    """

L
Ligoml 已提交
1834 1835 1836
    loss_out = fluid.layers.warpctc(
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1837

Z
zhiboniu 已提交
1838
    loss_out = paddle.squeeze(loss_out, [-1])
1839 1840
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1841
        loss_out = paddle.mean(loss_out / label_lengths)
1842 1843 1844 1845 1846
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


L
Ligoml 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
1858
    r"""
1859 1860
    .. math::

1861
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1862

1863
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1864 1865 1866 1867
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1868 1869 1870 1871 1872 1873
        The API supports single GPU and multi GPU, and don't supports CPU.

        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1874 1875

    Args:
G
Guoxia Wang 已提交
1876
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1877
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1878 1879 1880 1881 1882
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1883 1884 1885
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
            `return_softmax` is False, otherwise the tuple \
            (loss, softmax), softmax is shard_softmax when \
            using model parallel, otherwise softmax is in \
            the same shape with input logits. If ``reduction == None``, \
            the shape of loss is ``[N, 1]``, otherwise the shape is ``[1]``.

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1904
        :name: code-example1
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
        
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1953
        :name: code-example2
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py 
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2044 2045 2046
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
L
Ligoml 已提交
2047 2048 2049 2050
             (got group: {})'.format(
                group
            )
        )
2051 2052 2053
        return

    if hasattr(group, 'is_member') and not group.is_member():
2054 2055
        return

2056
    ring_id = 0
2057 2058
    rank = 0
    nranks = 1
2059 2060 2061 2062 2063
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
L
Ligoml 已提交
2064 2065 2066 2067 2068
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2069
            nranks = parallel_env.world_size if group is None else group.nranks
2070 2071 2072 2073 2074

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2075
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
L
Ligoml 已提交
2076 2077 2078 2079
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
2080 2081 2082
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2083
    if in_dygraph_mode():
L
Ligoml 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2096 2097 2098 2099 2100 2101 2102 2103
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
2104
    elif _in_legacy_dygraph():
2105
        softmax, loss = _legacy_C_ops.margin_cross_entropy(
L
Ligoml 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
            logits,
            label,
            'ring_id',
            ring_id,
            'rank',
            rank,
            'nranks',
            nranks,
            'margin1',
            margin1,
            'margin2',
            margin2,
            'margin3',
            margin3,
            'scale',
            scale,
            'return_softmax',
            return_softmax,
        )
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

L
Ligoml 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    check_variable_and_dtype(
        logits,
        'logits',
        ['float16', 'float32', 'float64'],
        'margin_cross_entropy',
    )
    check_variable_and_dtype(
        label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
    )

    helper.append_op(
        type=op_type,
        inputs={'Logits': logits, 'Label': label},
        outputs={'Softmax': softmax, 'Loss': loss},
        attrs={
            'return_softmax': return_softmax,
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
            'margin1': margin1,
            'margin2': margin2,
            'margin3': margin3,
            'scale': scale,
        },
    )
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


2176 2177 2178 2179
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
L
Ligoml 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
    r"""
    This operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`, 
            Label is a ``Tensor``  in the same shape with :attr:`logits`. 
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor`` 
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
                                      if :attr:`soft_label` is set to :attr:`False`. 
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
                                              when :attr:`soft_label` is :attr:`False` 
                                              and GPU is used. When :attr:`soft_label` 
                                              is :attr:`True` or CPU is used, the 
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
        axis (int, optional): The index of dimension to perform softmax calculations. It 
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
L
Ligoml 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2301
    r"""
L
Ligoml 已提交
2302 2303 2304
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2305

2306
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2307

L
Ligoml 已提交
2308 2309
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
2310
    parameters for details.
2311

2312
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
L
Ligoml 已提交
2313
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2314
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2315

2316
    The calculation of this operator includes the following two steps.
2317

2318
    - **1.softmax cross entropy**
2319

2320
        1. Hard label (each sample can only be assigned into one category)
2321

2322
        1.1. when use_softmax=True
2323

2324 2325
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2326

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
L
Ligoml 已提交
2368
                \\loss_j=loss_j*weight[label_j]
2369

2370

2371 2372 2373 2374 2375 2376 2377
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

L
Ligoml 已提交
2378
            2.1 if the ``reduction`` parameter is ``none``
2379 2380 2381

                Return the previous result directly

L
Ligoml 已提交
2382
            2.2 if the ``reduction`` parameter is ``sum``
2383 2384 2385 2386 2387 2388

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

L
Ligoml 已提交
2389 2390
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2391

L
Ligoml 已提交
2392
            2.3.1. If the  ``weight``  parameter is ``None``
2393 2394 2395

                   Return the average value of the previous results

2396
            .. math::
2397 2398 2399 2400 2401 2402 2403 2404
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2405
            .. math::
L
Ligoml 已提交
2406
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2407 2408 2409

            2. Soft labels (soft_label = True)

2410
            .. math::
2411
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2412 2413


2414
    Parameters:
2415 2416 2417 2418

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
L
Ligoml 已提交
2419
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
2420

L
Ligoml 已提交
2421
            Note:
2422

L
Ligoml 已提交
2423
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
2424 2425 2426
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
2427

2428 2429 2430 2431 2432 2433
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

L
Ligoml 已提交
2434
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2435 2436 2437 2438
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

L
Ligoml 已提交
2439 2440
            a manual rescaling weight given to each class.
            If given, has to be a Tensor of size C and the data type is float32, float64.
2441 2442 2443 2444 2445
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
L
Ligoml 已提交
2446 2447
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2448 2449 2450 2451 2452
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2453 2454
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2455
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2456 2457
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2458

2459 2460
        - **soft_label** (bool, optional)

L
Ligoml 已提交
2461
            Indicate whether label is soft.
2462 2463 2464 2465
            Default is ``False``.

        - **axis** (int, optional)

L
Ligoml 已提交
2466 2467 2468
            The index of dimension to perform softmax calculations.
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2469 2470 2471 2472 2473 2474 2475
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2476
        - **name** (str, optional)
2477 2478 2479

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2480 2481 2482

    Returns:

2483 2484
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2485

2486
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2487

2488
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2489

L
Ligoml 已提交
2490
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2491

L
Ligoml 已提交
2492
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2493 2494


2495
    Examples:
2496 2497

        .. code-block:: python
2498 2499

            # hard labels
2500 2501 2502 2503 2504
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
L
Ligoml 已提交
2505
            input =  paddle.rand([N, C], dtype='float64')
2506
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
L
Ligoml 已提交
2507 2508
            weight = paddle.rand([C], dtype='float64')

2509 2510 2511 2512 2513 2514 2515 2516
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

        .. code-block:: python
2517 2518

            # soft labels
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
L
Ligoml 已提交
2532 2533 2534
                                                                  logits,
                                                                  labels,
                                                                  soft_label=True,
2535 2536 2537 2538
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2539

2540 2541 2542 2543
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2544 2545
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
L
Ligoml 已提交
2546 2547
            % reduction
        )
2548 2549 2550
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
L
Ligoml 已提交
2551 2552 2553
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2554

2555
    input_dims = len(list(input.shape))
2556 2557 2558
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2559 2560
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2561
        raise ValueError(
2562
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
L
Ligoml 已提交
2563 2564 2565 2566
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
2567 2568
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2569

2570
    if in_dygraph_mode():
H
HydrogenSulfate 已提交
2571
        if soft_label == False:
L
Ligoml 已提交
2572 2573 2574
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
F
fwenguang 已提交
2575
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2576
            if soft_label == False:
2577
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2591
            else:
2592
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2606
        else:
L
Ligoml 已提交
2607 2608 2609
            _, out = _C_ops.cross_entropy_with_softmax(
                input, label, soft_label, use_softmax, True, ignore_index, axis
            )
2610 2611 2612 2613 2614 2615 2616 2617 2618

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
            if soft_label == True:
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
L
Ligoml 已提交
2619 2620 2621 2622 2623 2624
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2625 2626 2627 2628
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2629
                out = _C_ops.multiply(out, weight_gather_reshape)
2630 2631 2632 2633 2634
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
L
Ligoml 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2647
                    # TODO: Temporarily use squeeze instead of squeeze_
L
Ligoml 已提交
2648 2649 2650
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2651
                if axis != -1 and axis != valid_label.ndim - 1:
L
Ligoml 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2661
                    weight_gather = _C_ops.gather_nd(
L
Ligoml 已提交
2662 2663
                        weight, valid_label.transpose(temp_perm)
                    )
2664
                else:
2665
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
L
Ligoml 已提交
2666 2667 2668
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2669
                input_shape = list(label.shape)
L
Ligoml 已提交
2670 2671 2672
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2673
                out = paddle.cast(out, weight_gather_reshape.dtype)
2674
                out = _C_ops.multiply(out, weight_gather_reshape)
2675 2676 2677 2678 2679

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2680
            return _C_ops.sum(out, [], None, False)
2681 2682 2683 2684 2685 2686 2687 2688
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
            if ignore_index >= 0:
2689
                out_sum = _C_ops.sum(out, [], None, False)
2690 2691 2692
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
L
Ligoml 已提交
2693
                mask = label != ignore_index
2694 2695
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2696
                    count = _C_ops.sum(mask, [], None, False)
2697 2698 2699
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
L
Ligoml 已提交
2700 2701 2702
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2703
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2704 2705 2706
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2707
                out_sum = _C_ops.sum(out, [], None, False)
L
Ligoml 已提交
2708 2709 2710
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2711 2712
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2713
                return _C_ops.mean_all(out)
2714 2715 2716 2717 2718 2719 2720 2721

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

    elif _in_legacy_dygraph():
        if soft_label == False:
L
Ligoml 已提交
2722 2723 2724
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2725 2726 2727
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
L
Ligoml 已提交
2728 2729 2730
                raise ValueError(
                    "Target {} is out of lower bound.".format(label_min.item())
                )
2731
            if label_max >= input.shape[axis]:
L
Ligoml 已提交
2732 2733 2734
                raise ValueError(
                    "Target {} is out of upper bound.".format(label_max.item())
                )
2735 2736
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
            if soft_label == False:
2737
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2751
            else:
2752
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2766
        else:
2767
            _, out = _legacy_C_ops.softmax_with_cross_entropy(
L
Ligoml 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
                input,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                True,
                'axis',
                axis,
                'use_softmax',
                use_softmax,
            )
2781

2782
        if weight is not None:
2783

H
HydrogenSulfate 已提交
2784
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2785 2786
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
2787
                # weight's shape is C, where C is class num.
2788 2789
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
L
Ligoml 已提交
2790 2791 2792 2793 2794 2795
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2796 2797 2798 2799
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2800
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2801 2802

            else:
2803 2804 2805 2806
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
L
Ligoml 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
H
HydrogenSulfate 已提交
2819
                    # TODO: Temporarily use squeeze instead of squeeze_
L
Ligoml 已提交
2820 2821 2822
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2823
                if axis != -1 and axis != valid_label.ndim - 1:
L
Ligoml 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2833
                    weight_gather = _legacy_C_ops.gather_nd(
L
Ligoml 已提交
2834 2835
                        weight, valid_label.transpose(temp_perm)
                    )
2836
                else:
2837 2838
                    weight_gather = _legacy_C_ops.gather_nd(weight, valid_label)
                weight_gather = _legacy_C_ops.elementwise_mul(
L
Ligoml 已提交
2839 2840
                    weight_gather, ignore_weight_mask
                )
2841
                input_shape = list(label.shape)
L
Ligoml 已提交
2842 2843 2844
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2845
                out = paddle.cast(out, weight_gather_reshape.dtype)
2846
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2847

2848
        if reduction == "sum":
H
HydrogenSulfate 已提交
2849
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2850 2851
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2852
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2853
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2854 2855 2856 2857 2858 2859
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2860
            if ignore_index >= 0:
2861
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2862 2863 2864
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
L
Ligoml 已提交
2865
                mask = label != ignore_index
2866
                if weight is None:
2867
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2868
                    count = _legacy_C_ops.reduce_sum(mask, 'reduce_all', True)
2869
                    ret = out_sum / (count + (count == 0.0))
2870 2871
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2872
                    weight_ignored = _legacy_C_ops.elementwise_mul(
L
Ligoml 已提交
2873 2874
                        mask, weight_gather_reshape
                    )
2875
                    weight_sum = _legacy_C_ops.reduce_sum(
L
Ligoml 已提交
2876 2877
                        weight_ignored, 'reduce_all', True
                    )
2878
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2879 2880
                return ret
            elif weight is not None:
2881
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
L
Ligoml 已提交
2882 2883 2884
                total_weight = _legacy_C_ops.reduce_sum(
                    weight_gather_reshape, 'reduce_all', True
                )
2885
                return out_sum / (total_weight + (total_weight == 0.0))
2886
            else:
2887
                return _legacy_C_ops.mean(out)
2888
        else:
2889 2890
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2891
            return out
2892

2893
    check_variable_and_dtype(
L
Ligoml 已提交
2894 2895 2896 2897 2898 2899 2900 2901
        input,
        'input',
        ['float16', 'float32', 'float64'],
        'softmax_cross_entropy',
    )
    check_variable_and_dtype(
        label,
        'label',
2902
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
L
Ligoml 已提交
2903 2904
        'softmax_cross_entropy',
    )
2905 2906 2907 2908 2909
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
L
Ligoml 已提交
2910
        'use_softmax': use_softmax,
2911 2912 2913 2914
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2915 2916 2917 2918 2919

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
L
Ligoml 已提交
2920 2921 2922 2923 2924 2925
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': input, 'Label': label},
        outputs=outputs,
        attrs=attrs,
    )
2926

2927
    if weight is not None:
L
Ligoml 已提交
2928 2929 2930
        check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'softmax_cross_entropy'
        )
2931
        weight_name = name if reduction == 'none' else None
2932 2933
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
2934
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2935 2936 2937
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
L
Ligoml 已提交
2938 2939 2940 2941 2942 2943
            weight_gather = paddle.matmul(
                x=paddle.cast(label, weight.dtype),
                y=weight,
                transpose_x=False,
                transpose_y=True,
            )
2944 2945 2946 2947 2948

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2949
            if input.shape[axis] != weight.shape[-1]:
L
Ligoml 已提交
2950 2951 2952 2953 2954 2955 2956
                raise ValueError(
                    "input's class_dimension({}) must equal to "
                    "weight's class_dimension({}) "
                    "when weight is provided".format(
                        input.shape[axis], weight.shape[-1]
                    )
                )
H
HydrogenSulfate 已提交
2957

H
HydrogenSulfate 已提交
2958
            valid_label = paddle.multiply(
L
Ligoml 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967
                paddle.cast(label != ignore_index, dtype=label.dtype), label
            )
            ignore_weight_mask = paddle.cast(
                (label != ignore_index), input.dtype
            )
            if (
                ignore_weight_mask.ndim > 1
                and ignore_weight_mask.shape[axis] == 1
            ):
2968
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2969
            if axis != -1 and axis != valid_label.ndim - 1:
L
Ligoml 已提交
2970 2971 2972 2973 2974 2975 2976
                temp_perm = (
                    list(range(axis % valid_label.ndim))
                    + list(
                        range((axis % valid_label.ndim + 1), valid_label.ndim)
                    )
                    + [axis % valid_label.ndim]
                )
2977
                weight_gather = paddle.gather_nd(
L
Ligoml 已提交
2978 2979
                    weight, paddle.transpose(valid_label, temp_perm)
                )
2980 2981
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2982 2983
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2984 2985
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2986
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2987

2988 2989 2990
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2991
        if ignore_index >= 0:
2992
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2993 2994 2995
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
L
Ligoml 已提交
2996 2997
            mask = label != ignore_index
            if weight is None:
2998 2999
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
3000
                ret = out_sum / (count + (count == 0.0))
3001 3002 3003 3004
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
3005
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
3006 3007
            return ret
        elif weight is not None:
3008 3009
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
3010
            return out_sum / (total_weight + (total_weight == 0.0))
3011 3012
        else:
            return paddle.mean(out, name=name)
3013

3014
    else:
3015 3016 3017
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

3018
        return out
3019 3020


L
Ligoml 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
3030
    r"""
3031 3032 3033 3034 3035 3036
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

L
Ligoml 已提交
3037
    This operator measures focal loss function as follows:
3038 3039

    .. math::
3040
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
3041

L
Ligoml 已提交
3042
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
3043 3044 3045 3046 3047

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
3048
           Out = \frac{Out}{normalizer}
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
3066
            For object detection task, it is the number of positive samples.
3067 3068
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
L
Ligoml 已提交
3069
            it should be between 0 and 1.  Default value is set to 0.25.
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
3094
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
3095
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
3096
            print(output)  # [0.65782464]
3097 3098 3099 3100 3101 3102

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
L
Ligoml 已提交
3103 3104
            % reduction
        )
3105 3106

    if normalizer is not None:
L
Ligoml 已提交
3107 3108 3109 3110 3111 3112
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3113 3114 3115 3116
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
L
Ligoml 已提交
3117 3118 3119 3120
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
                    normalizer_dims
                )
            )
3121

3122 3123
    if in_dygraph_mode():
        place = _current_expected_place()
3124
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3125

L
Ligoml 已提交
3126 3127 3128
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
3129

3130
        pred = _C_ops.sigmoid(logit)
3131

3132 3133
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
L
Ligoml 已提交
3134 3135 3136 3137
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3138 3139

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3140 3141
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
L
Ligoml 已提交
3142 3143 3144 3145
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3146
        loss = _C_ops.multiply(alpha_t, loss)
3147 3148

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3149 3150
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3151 3152

        if normalizer is not None:
3153
            loss = _C_ops.divide(loss, normalizer)
3154 3155

        if reduction == "sum":
3156
            return _C_ops.sum(loss, [], None, False)
3157
        elif reduction == "mean":
3158
            return _C_ops.mean_all(loss)
3159 3160 3161 3162 3163

        return loss

    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
L
Ligoml 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
        _legacy_C_ops.fill_constant(
            one,
            'value',
            float(1.0),
            'force_cpu',
            False,
            'dtype',
            one.dtype,
            'str_value',
            '1.0',
            'shape',
            logit.shape,
        )
3177
        loss = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
3178

3179
        pred = _legacy_C_ops.sigmoid(logit)
3180

3181 3182 3183 3184
        p_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(pred, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, pred),
L
Ligoml 已提交
3185 3186 3187
                _legacy_C_ops.elementwise_sub(one, label),
            ),
        )
3188 3189

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3190 3191 3192 3193
        alpha_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(alpha, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, alpha),
L
Ligoml 已提交
3194 3195 3196
                _legacy_C_ops.elementwise_sub(one, label),
            ),
        )
3197
        loss = _legacy_C_ops.elementwise_mul(alpha_t, loss)
3198 3199

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3200
        gamma_t = _legacy_C_ops.elementwise_pow(
L
Ligoml 已提交
3201 3202
            _legacy_C_ops.elementwise_sub(one, p_t), gamma
        )
3203
        loss = _legacy_C_ops.elementwise_mul(gamma_t, loss)
3204 3205

        if normalizer is not None:
3206
            loss = _legacy_C_ops.elementwise_div(loss, normalizer)
3207 3208

        if reduction == "sum":
3209
            return _legacy_C_ops.reduce_sum(loss, 'reduce_all', True)
3210
        elif reduction == "mean":
3211
            return _legacy_C_ops.mean(loss)
3212 3213 3214

        return loss

L
Ligoml 已提交
3215 3216 3217 3218 3219 3220
    check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
3221 3222 3223 3224 3225

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
L
Ligoml 已提交
3226 3227
        logit, label, reduction='none', name=bce_name
    )
3228

Z
zhiboniu 已提交
3229
    pred = paddle.nn.functional.sigmoid(logit)
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
3248 3249


L
Ligoml 已提交
3250 3251 3252
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3253 3254
    r"""

L
Ligoml 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3269

L
Ligoml 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
3293 3294 3295 3296
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
L
Ligoml 已提交
3297 3298
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3299 3300

    if not (input.shape == label.shape):
L
Ligoml 已提交
3301 3302 3303 3304
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3305 3306

    if not _non_static_mode():
L
Ligoml 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3319

L
Ligoml 已提交
3320 3321 3322 3323
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3324 3325 3326

    if weight is not None:
        if not _non_static_mode():
L
Ligoml 已提交
3327 3328 3329 3330 3331 3332
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
L
Ligoml 已提交
3422 3423
            "but received {}.".format(reduction)
        )
3424

3425
    if not _non_static_mode():
L
Ligoml 已提交
3426 3427 3428 3429 3430 3431
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3432 3433

    zero_ = paddle.zeros([1], dtype=input.dtype)
L
Ligoml 已提交
3434 3435 3436
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3437 3438 3439 3440 3441 3442 3443

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3444 3445


L
Ligoml 已提交
3446 3447 3448
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
L
Ligoml 已提交
3509 3510
            "1D target tensor expected, multi-target not supported"
        )
3511 3512 3513 3514

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
L
Ligoml 已提交
3515 3516
            "different sizes"
        )
3517 3518 3519 3520 3521 3522 3523 3524

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
L
Ligoml 已提交
3525 3526
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3527
    if label.dtype not in [
L
Ligoml 已提交
3528 3529 3530 3531
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3555 3556


L
Ligoml 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

L
Ligoml 已提交
3586
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
L
Ligoml 已提交
3602 3603

            margin (float, optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3604
            between the positive and negative distances required for the loss to be 0.
L
Ligoml 已提交
3605

Y
yangguohao 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
3617

Y
yangguohao 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
L
Ligoml 已提交
3641 3642 3643 3644 3645
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3646 3647 3648 3649 3650
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
L
Ligoml 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3669 3670

    if not (input.shape == positive.shape == negative.shape):
L
Ligoml 已提交
3671 3672 3673 3674 3675
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3676

L
Ligoml 已提交
3677 3678 3679
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3680
        else paddle.nn.PairwiseDistance(2)
L
Ligoml 已提交
3681
    )
Y
yangguohao 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
L
Ligoml 已提交
3693 3694
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3704 3705


L
Ligoml 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
L
Ligoml 已提交
3793 3794
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3795 3796 3797 3798 3799
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
L
Ligoml 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3809 3810

    if not (input.shape == positive.shape == negative.shape):
L
Ligoml 已提交
3811 3812 3813 3814 3815
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887


def soft_margin_loss(input, label, reduction='mean', name=None):
    """
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        input (Tensor): The input predications tensor with shape: [N, *],
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
             Available dtype is float32, float64.

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)

            input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64)
            label_np = np.random.randint(0, 2, size=(5, 5)).astype(np.int64)
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
L
Ligoml 已提交
3888 3889 3890
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3891 3892 3893

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(
L
Ligoml 已提交
3894 3895 3896 3897 3898 3899 3900 3901
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3902 3903

    if not (input.shape == label.shape):
L
Ligoml 已提交
3904
        raise ValueError("input's shape must equal to " "label's shape")
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out