test_sgd_op.py 17.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15
import unittest
16

Q
qijun 已提交
17
import numpy as np
18
from op_test import OpTest
19

J
Jiawei Wang 已提交
20
import paddle
21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
Z
zyfncg 已提交
23
from paddle.fluid.framework import _test_eager_guard
24
from paddle.fluid.op import Operator
Q
Qiao Longfei 已提交
25

W
WangXi 已提交
26 27
paddle.enable_static()

Q
Qiao Longfei 已提交
28

29
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
30
    def setUp(self):
Q
qijun 已提交
31
        self.op_type = "sgd"
T
tensor-tang 已提交
32 33 34
        self.conf()
        w = np.random.random((self.h, self.w)).astype("float32")
        g = np.random.random((self.h, self.w)).astype("float32")
35
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
36

37 38
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
39

T
tensor-tang 已提交
40 41 42 43
    def conf(self):
        self.h = 102
        self.w = 105

Q
qijun 已提交
44 45 46
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
47

T
tensor-tang 已提交
48 49 50 51 52 53
class TestSGDOpCase8X(TestSGDOp):
    def conf(self):
        self.h = 10
        self.w = 64


Q
qijun 已提交
54
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
55
    def check_with_place(self, place):
Q
qijun 已提交
56 57
        scope = core.Scope()

58
        # create and initialize Grad Variable
Q
qijun 已提交
59 60
        height = 10
        rows = [0, 4, 7]
T
tensor-tang 已提交
61
        self.conf()
Q
qiaolongfei 已提交
62 63 64 65

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
T
tensor-tang 已提交
66
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
Q
qiaolongfei 已提交
67 68 69 70 71 72 73 74
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
T
tensor-tang 已提交
75
        param_array = np.full((height, self.row_numel), 5.0).astype("float32")
Q
qiaolongfei 已提交
76 77 78 79 80 81 82 83
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
84 85 86 87 88 89 90
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate',
        )
Q
qiaolongfei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)

T
tensor-tang 已提交
118 119 120 121 122 123 124 125
    def conf(self):
        self.row_numel = 12


class TestSparseSGDOpCase8X(TestSparseSGDOp):
    def conf(self):
        self.row_numel = 16

Q
qiaolongfei 已提交
126 127 128 129 130

class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
131
        row_width = 12
Q
qiaolongfei 已提交
132
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
133 134
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
135 136

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
137 138 139 140 141
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
142

Q
qijun 已提交
143
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
144
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
145 146

        # create and initialize Param Variable
Q
qiaolongfei 已提交
147 148 149 150 151 152 153
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
154
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
155 156 157 158 159 160 161
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
162 163

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
164
        lr_value = 0.1
Q
qijun 已提交
165
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
166
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
167 168
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
169 170 171
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
172 173 174
            w_after_optimize[id] = (
                w_before_optimize[id] - lr_value * grad_array[index]
            )
Q
qiaolongfei 已提交
175

Q
qijun 已提交
176
        # create and run sgd operator
177 178 179 180 181 182 183
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate',
        )
D
dzhwinter 已提交
184
        sgd_op.run(scope, place)
Q
qijun 已提交
185 186

        # get and compare result
Q
qiaolongfei 已提交
187 188
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
189

190
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
191
        places = [core.CPUPlace()]
192
        # do not support GPU kernel currently
Q
qijun 已提交
193 194 195
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
196

197 198
class TestSGDOpWithLargeInput(unittest.TestCase):
    def runTest(self):
199
        paddle.enable_static()
200
        data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
201 202 203
        label = fluid.layers.fill_constant(
            shape=[1, 150], value=0.5, dtype='float32'
        )
204
        emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
205
        out = paddle.nn.functional.normalize(x=emb, axis=-1)
206

207
        cost = paddle.nn.functional.square_error_cost(input=out, label=label)
208
        avg_cost = paddle.mean(cost)
209 210 211 212 213 214 215
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        compiled_prog = fluid.compiler.CompiledProgram(
216 217
            fluid.default_main_program()
        )
218 219 220
        result = exe.run(compiled_prog, fetch_list=[avg_cost])


J
Jiawei Wang 已提交
221 222 223 224 225 226 227
class TestSGDV2(unittest.TestCase):
    def test_sgd_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
228 229 230 231 232
        adam = paddle.optimizer.SGD(
            learning_rate=0.01,
            parameters=linear.parameters(),
            weight_decay=0.01,
        )
J
Jiawei Wang 已提交
233 234 235 236 237 238
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_sgd(self):
239
        paddle.enable_static()
W
WangXi 已提交
240 241 242 243 244

        def check_sgd_optimizer(optimizer_attr):
            init_program = paddle.static.Program()
            program = paddle.static.Program()
            block = program.global_block()
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr,
            )
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
            )
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
            )
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out"
            )
            block.append_op(
                type="mul",
                inputs={"X": mul_x, "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1},
            )
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
            )
W
WangXi 已提交
270 271 272 273 274 275 276 277 278 279 280
            sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])
J
Jiawei Wang 已提交
281 282 283 284

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None)

W
WangXi 已提交
285
    def test_sgd_group_dygraph(self):
286 287 288 289 290 291
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
292 293 294 295 296 297 298 299 300 301 302 303
        adam = paddle.optimizer.SGD(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                },
            ],
            weight_decay=0.01,
        )
304 305 306 307 308 309
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()

Z
zyfncg 已提交
310 311 312 313 314
    def test_eager(self):
        with _test_eager_guard():
            self.test_sgd_dygraph()
            self.test_sgd_group_dygraph()

315

316 317 318 319 320 321 322
class TestSGDMultiPrecision2_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
323 324 325
        optimizer = paddle.optimizer.SGD(
            parameters=model.parameters(), multi_precision=mp
        )
326
        if mp:
327 328 329 330
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
331
            if mp:
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        optimizer = paddle.optimizer.SGD(multi_precision=mp)

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
362 363
                use_fp16_guard=False,
            )
364 365
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
366 367 368
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
369
            else:
370 371 372
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
373
            hidden = paddle.static.nn.fc(x=data, size=10)
374
            loss = paddle.mean(hidden)
375 376 377 378 379 380 381 382 383 384
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
385 386 387
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
388 389 390 391 392 393 394 395 396
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
397 398 399 400 401 402
        np.testing.assert_allclose(
            output1_dy.astype('float32').numpy(),
            output2_dy.astype('float32').numpy(),
            rtol=1e-05,
            atol=0.1,
        )
403
        for idx in range(len(params1_dy)):
404 405 406 407
            np.testing.assert_allclose(
                params1_dy[idx].astype('float32').numpy(),
                params2_dy[idx].astype('float32').numpy(),
                rtol=1e-05,
408 409
                atol=0.1,
            )
410 411 412 413
        "Test static mode"
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
414 415 416 417 418 419
            np.testing.assert_allclose(
                output1_st[idx].astype('float32'),
                output2_st[idx].astype('float32'),
                rtol=1e-05,
                atol=0.1,
            )
420 421 422 423 424 425 426 427 428 429 430 431


class TestSGDMultiPrecision1_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001,
            parameter_list=model.parameters(),
432 433
            multi_precision=mp,
        )
434
        if mp:
435 436 437 438
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
439
            if mp:
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_gradients()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.minimize(loss)
                optimizer.clear_gradients()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
462 463 464
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001, multi_precision=mp
        )
465 466 467 468 469 470 471

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
472 473
                use_fp16_guard=False,
            )
474 475
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
476 477 478
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
479
            else:
480 481 482
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
483
            hidden = paddle.static.nn.fc(x=data, size=10)
484
            loss = paddle.mean(hidden)
485 486 487 488 489 490 491 492 493 494
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
495 496 497
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
498 499 500 501 502 503 504 505 506
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
507 508 509 510 511 512
        np.testing.assert_allclose(
            output1_dy.astype('float32').numpy(),
            output2_dy.astype('float32').numpy(),
            rtol=1e-05,
            atol=0.1,
        )
513
        for idx in range(len(params1_dy)):
514 515 516 517
            np.testing.assert_allclose(
                params1_dy[idx].astype('float32').numpy(),
                params2_dy[idx].astype('float32').numpy(),
                rtol=1e-05,
518 519
                atol=0.1,
            )
520 521 522 523
        "Test static mode"
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
524 525 526 527 528 529
            np.testing.assert_allclose(
                output1_st[idx].astype('float32'),
                output2_st[idx].astype('float32'),
                rtol=1e-05,
                atol=0.1,
            )
530 531


Q
Qiao Longfei 已提交
532 533
if __name__ == "__main__":
    unittest.main()