layers.py 66.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
C
chenjian 已提交
28
import paddle.profiler as profiler
29
from paddle.profiler.utils import in_profiler_mode
30

C
chengduo 已提交
31
from . import parallel_helper
X
Xin Pan 已提交
32
from .. import unique_name
33
from paddle.fluid import core
34
from .layer_object_helper import LayerObjectHelper
35
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
36
from .base import program_desc_tracing_guard, param_guard, in_declarative_mode, _convert_into_variable
37
from paddle.fluid import framework
38
from ..param_attr import ParamAttr
39
from paddle.fluid.executor import Executor, global_scope
40
from paddle.fluid.framework import _non_static_mode, convert_np_dtype_to_dtype_, in_dygraph_mode
41
from paddle.fluid.framework import _current_expected_place as _get_device
42
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
43
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
44
import paddle.utils.deprecated as deprecated
45

46
__all__ = ['Layer']
47

48 49 50 51 52 53 54 55
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

56

57 58 59 60 61 62 63 64 65 66 67
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
84
class Layer(object):
85 86
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
87

88
    Parameters:
89 90
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
91 92 93
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
94
        dtype(str, optional): data type of this parameter.
95 96
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
97
                Default: "float32"
98

99 100
    Returns:
        None
X
Xin Pan 已提交
101
    """
X
Xin Pan 已提交
102

103
    def __init__(self, name_scope=None, dtype="float32"):
104
        self.training = True
105
        if name_scope is None:
106 107
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
108
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
109
        self._built = False
M
minqiyang 已提交
110
        self._dtype = dtype
J
Jiabin Yang 已提交
111
        self._init_in_dynamic_mode = framework._non_static_mode()
112

X
Xin Pan 已提交
113
        self._parameters = collections.OrderedDict()
114 115 116
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
117
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
118
        self._loaddict_holder = collections.OrderedDict()
119

120 121 122 123
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

124 125 126
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

127 128 129
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()
130 131
        # Records orignal functions after @to_static to support to rollback
        self._original_funcs = collections.OrderedDict()
132

M
minqiyang 已提交
133
    def train(self):
134 135 136 137 138 139
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

164
        """
165 166 167
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
168
        if _non_static_mode():
169
            framework._dygraph_tracer().train_mode()
170 171 172
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
173
            layer.training = True
M
minqiyang 已提交
174 175

    def eval(self):
176 177 178 179 180 181
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

205
        """
206 207 208
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
209
        if _non_static_mode():
210
            framework._dygraph_tracer().eval_mode()
211 212 213
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
214
            layer.training = False
M
minqiyang 已提交
215

L
LielinJiang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
232

L
LielinJiang 已提交
233 234 235 236 237
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
238
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
239 240 241 242 243 244 245
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
246
        for layer in self.children():
L
LielinJiang 已提交
247 248 249 250 251 252
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
253
    def full_name(self):
254
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
255

256 257
        Returns:
            str: full name of this layer.
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
275 276 277
        """
        return self._full_name

278 279 280 281 282
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
283

284 285 286 287 288 289 290 291 292 293 294
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

295 296 297 298 299 300
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
301

302 303
                    # change the output
                    return output * 2
304

305
                linear = paddle.nn.Linear(13, 5)
306

307 308
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
309

310 311
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
312

313
                out0 = linear(in1)
314

315 316 317 318 319 320 321
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
322 323 324 325 326 327 328
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
329

330
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
331
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
332 333 334 335 336 337 338 339 340 341 342 343 344 345
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

346 347
                import paddle
                import numpy as np
348

349
                # the forward_pre_hook change the input of the layer: input = input * 2
350 351
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
352

353 354 355
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
356

357
                linear = paddle.nn.Linear(13, 5)
358

359 360
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
361

362 363 364
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
365

366 367
                # remove the hook
                forward_pre_hook_handle.remove()
368

369 370 371
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
372

373 374
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
375 376 377 378 379
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

380 381
    def create_parameter(self,
                         shape,
382
                         attr=None,
383
                         dtype=None,
384 385
                         is_bias=False,
                         default_initializer=None):
386
        """Create parameters for this layer.
387

388
        Parameters:
389
            shape(list): Shape of the parameter.
390 391
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
392
                If set str, it can be "bool",  "float16", "float32", "float64",
393 394
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
395
            default_initializer(Initializer, optional): the default initializer for this parameter.
396
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
397
                for non-bias and bias parameter, respectively. Default: None.
398

399
        Returns:
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

421
        """
H
hong 已提交
422 423 424 425
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
426 427
                                             default_initializer)

428 429 430
    @deprecated(since="2.0.0",
                update_to="paddle.nn.Layer.create_tensor",
                reason="New api in create_tensor, easier to use.")
431
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
432 433 434
        """

        Create Tensor for this layer.
435

436
        Parameters:
W
wanghuancoder 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
457

W
wanghuancoder 已提交
458
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
459

W
wanghuancoder 已提交
460 461 462
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
463

W
wanghuancoder 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
488
            dtype(str, optional): data type of this parameter.
489 490
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
491
                If set None, it will be "float32". Default: None
492

493
        Returns:
W
wanghuancoder 已提交
494
            Tensor, created Tensor.
495 496 497 498 499 500 501 502 503 504 505 506

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
507

W
wanghuancoder 已提交
508
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
509

510 511 512
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
513

514 515
                        return out

516 517 518 519 520 521 522 523
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
524 525 526 527
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
528

X
polish  
Xin Pan 已提交
529
    def parameters(self, include_sublayers=True):
530
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
531

532
        Returns:
533 534 535 536 537 538 539 540 541 542
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
543
        """
544
        ret = [
545
            param for _, param in self.named_parameters(
546 547
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
548
        return ret
X
Xin Pan 已提交
549

550 551 552 553 554 555 556 557 558
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

559
                import paddle
560

561 562 563 564 565
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
566

567
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

583
                import paddle
584

585 586 587 588 589 590 591
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
592 593 594 595 596 597 598 599

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
600
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
601 602
        """Returns a list of sub layers.

603
        Parameters:
J
Jiabin Yang 已提交
604
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
605

606 607
        Returns:
            list of Layer : a list of sub layers.
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
628
        """
629 630
        ret = [
            layer
J
Jiabin Yang 已提交
631
            for _, layer in self.named_sublayers(include_self=include_self)
632
        ]
X
Xin Pan 已提交
633 634
        return ret

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

650
                import paddle
651

652 653 654 655 656
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
657 658 659 660

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
661 662
            prefix=prefix, include_self=True) if include_sublayers else zip(
                [prefix], [self])
663 664 665 666 667 668 669 670 671
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
672
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
673 674 675 676 677 678 679
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
680
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
681 682 683 684 685 686 687

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

688
                import paddle
689

690 691 692 693 694
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
695 696 697 698 699 700 701

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
702 703 704 705
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
706 707 708
            for p, l in layer.named_sublayers(prefix=layer_prefix,
                                              include_self=True,
                                              layers_set=layers_set):
J
Jiabin Yang 已提交
709
                yield p, l
710

711
    def register_buffer(self, name, tensor, persistable=True):
712
        """
713
        Registers a tensor as buffer into the layer.
714

715
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
716 717 718 719 720 721 722 723 724 725
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
726
            tensor (Tensor): the tensor to be registered as buffer.
727 728 729 730 731
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
732

733 734 735 736
        Examples:
            .. code-block:: python

                import numpy as np
737
                import paddle
738

739 740 741 742 743 744 745
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
746 747 748 749 750 751 752 753 754 755 756

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
757 758 759 760
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
761 762 763 764
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
765 766
        elif tensor is not None and not (type(tensor) == core.VarBase
                                         or type(tensor) == core.eager.Tensor):
767
            raise TypeError(
768 769
                "The registered buffer should be a Paddle.Tensor, but received {}."
                .format(type(tensor).__name__))
770
        else:
771
            self._buffers[name] = tensor
772 773 774 775 776 777 778 779 780 781 782 783 784
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

800 801
        """
        ret = [
802
            buffer for _, buffer in self.named_buffers(
803 804 805 806 807 808
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
809
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
810 811 812 813 814 815 816

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
817
            (string, Tensor): Tuple of name and tensor
818 819 820 821 822

        Examples:
            .. code-block:: python

                import numpy as np
823
                import paddle
824

825 826 827 828
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
829

830 831 832 833 834
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
835

836
                model = paddle.nn.Sequential(fc1, fc2)
837

838 839 840
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
841 842 843 844

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
845 846
            prefix=prefix, include_self=True) if include_sublayers else zip(
                [prefix], [self])
847 848 849 850 851 852 853 854 855
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
856
    def clear_gradients(self):
857 858
        """
        Clear the gradients of all parameters for this layer.
859

860 861
        Returns:
            None
862

863 864 865
        Examples:
            .. code-block:: python

866
                import paddle
867 868
                import numpy as np

869 870 871 872 873 874 875 876 877
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
878 879

        """
X
Xin Pan 已提交
880
        for p in self.parameters():
881 882
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
883

884
    def _build_once(self, *args, **kwargs):
885 886
        pass

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
                if parallel_helper._is_data_parallel_mode(
                ) and paddle.is_compiled_with_xpu():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())

            self._built = True

909 910 911 912 913
        if in_profiler_mode():
            with profiler.RecordEvent(self.full_name(),
                                      profiler.TracerEventType.Forward):
                outputs = self.forward(*inputs, **kwargs)
        else:
C
chenjian 已提交
914
            outputs = self.forward(*inputs, **kwargs)
915 916 917 918 919 920 921 922

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

923
    def __call__(self, *inputs, **kwargs):
924
        if (not in_declarative_mode()) and (not self._forward_pre_hooks) \
925
            and (not self._forward_post_hooks) and (not self._built) and in_dygraph_mode() and (not in_profiler_mode()):
926 927 928 929
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
930

931
    def forward(self, *inputs, **kwargs):
932 933 934 935 936 937 938 939
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
940
        raise NotImplementedError
X
Xin Pan 已提交
941 942 943 944

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
945 946 947
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

948
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
949

950 951 952
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
953
        Returns:
954
            Layer: the sublayer passed in.
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
981
        """
J
Jiabin Yang 已提交
982
        assert (isinstance(sublayer, Layer) or sublayer == None)
983

X
Xin Pan 已提交
984 985 986 987 988 989
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

990
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
991

992 993 994
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
995
        Returns:
996
            Parameter: the parameter passed in.
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1016
        """
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1035
            raise TypeError(
1036 1037
                "The parameter to be added should be a Parameter, but received {}."
                .format(type(parameter).__name__))
1038 1039 1040
        else:
            if parameter is None:
                self._parameters[name] = None
1041

1042 1043 1044
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1045

1046
                parameter.set_value(self._loaddict_holder[parameter.name])
1047

1048
            self._parameters[name] = parameter
X
Xin Pan 已提交
1049 1050
        return parameter

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
1074 1075 1076
            raise TypeError(
                "attrs should be type(dict), but received {}".format(
                    type(attrs).__name__))
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
1092 1093
                self._forward_post_hooks.move_to_end(post_hook_helper._hook_id,
                                                     last=False)
1094 1095 1096 1097 1098 1099

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1100 1101 1102 1103 1104 1105
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1106
    def __getattr__(self, name):
1107 1108 1109
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1110
                if in_declarative_mode():
1111
                    return _convert_into_variable(self._parameters[name])
1112 1113 1114 1115 1116 1117 1118 1119
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1120
                if in_declarative_mode():
1121
                    return _convert_into_variable(_buffers[name])
1122 1123
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1124 1125

    def __setattr__(self, name, value):
1126

S
songyouwei 已提交
1127 1128 1129 1130 1131
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1132 1133
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1134
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1135 1136 1137 1138
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1139
            if len(self._loaddict_holder) > 0:
1140
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1141 1142 1143 1144
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1145
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1146
            params[name] = value
1147 1148 1149 1150
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
1151 1152
                    .format(name,
                            type(value).__name__))
1153
            params[name] = None
X
Xin Pan 已提交
1154
        else:
1155
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1156
            if isinstance(value, Layer):
1157 1158 1159 1160 1161
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1162
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1163 1164 1165 1166 1167
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
1168 1169
                        .format(name,
                                type(value).__name__))
1170 1171
                layers[name] = None
            else:
1172
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1173
                if isinstance(value, (core.VarBase, core.eager.Tensor)):
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1184 1185
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1186 1187
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1188
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1189 1190 1191 1192
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1193 1194 1195 1196
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1197 1198 1199
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
1200 1201 1202 1203
                                'not allowed to be set to Variable when self.{0} is None.'
                                .format(name))
                        elif _buffers[name] is None or type(getattr(
                                self, name)) == core.VarBase:
1204 1205
                            _buffers[name] = assign(value)
                        else:
1206
                            assign(value, getattr(self, name))
1207
                    elif value is not None:
1208 1209
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
1210 1211
                            .format(name,
                                    type(value).__name__))
1212 1213 1214 1215
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1216 1217
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1218 1219 1220 1221 1222 1223

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1224 1225 1226
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1227 1228 1229
        else:
            object.__delattr__(self, name)

1230 1231
    def __dir__(self):
        """
W
wanghuancoder 已提交
1232
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1233 1234

        Examples:
1235 1236 1237
            .. code-block:: python
                import paddle
                import numpy as np
1238

1239 1240 1241 1242 1243
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1244
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1245 1246
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1247

1248 1249 1250 1251
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1293 1294 1295 1296 1297
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1298 1299 1300
    def _obtain_parameters_buffers(self,
                                   destination=None,
                                   include_sublayers=True,
S
ShenLiang 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
                                   structured_name_prefix=""):
        """
        The difference from state_dict() is that state_dict_hook will not be called, 
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
                    destination = destination_temp
        return destination

    def _state_dict_impl(self,
                         destination=None,
                         include_sublayers=True,
                         structured_name_prefix="",
1330 1331
                         include_non_persistable_buffer=False,
                         use_hook=True):
1332 1333 1334 1335 1336 1337 1338
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
1339
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
                if buffer is not None and name not in self._non_persistable_buffer_names_set:
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + ".",
1363
                            include_non_persistable_buffer, use_hook))
1364
                    destination = destination_temp
1365 1366 1367 1368 1369
        if use_hook:
            for state_dict_hook in self._state_dict_hooks.values():
                hook_result = state_dict_hook(destination)
                if hook_result is not None:
                    destination = hook_result
1370 1371 1372 1373 1374 1375

        return destination

    def to_static_state_dict(self,
                             destination=None,
                             include_sublayers=True,
1376 1377
                             structured_name_prefix="",
                             use_hook=True):
1378 1379 1380 1381 1382 1383
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1384
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1404 1405
            include_non_persistable_buffer=True,
            use_hook=use_hook)
1406

H
hong 已提交
1407 1408 1409
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
1410 1411
                   structured_name_prefix="",
                   use_hook=True):
H
hong 已提交
1412
        '''
1413
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1414

1415
        Parameters:
1416 1417
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1418
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1419

H
hong 已提交
1420
        Retruns:
1421
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1422 1423

        Examples:
1424 1425
            .. code-block:: python

1426
                import paddle
H
hong 已提交
1427

1428 1429 1430 1431
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1432 1433

        '''
1434 1435 1436 1437
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1438 1439
            include_non_persistable_buffer=False,
            use_hook=use_hook)
1440

1441
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1442
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1443
        '''
1444
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1445

1446
        Parameters:
1447
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1448
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1449
                                                  Default: True
H
hong 已提交
1450 1451 1452 1453
        Returns:
            None

        Examples:
1454 1455
            .. code-block:: python

1456
                import paddle
1457

1458
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1459

1460
                state_dict = emb.state_dict()
1461 1462
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1463
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1464

H
hong 已提交
1465 1466
        '''

1467 1468 1469
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
1470 1471
                raise ValueError(
                    "{} is not found in the provided dict.".format(key))
S
Steffy-zxf 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
            if (isinstance(state, dict) or isinstance(state, list)):
                if (len(state) != len(param)):
                    raise ValueError("{} receieves the length of {}, "
                                     "but the expected shape is {}".format(
                                         key, len(state), len(param)))
                else:
                    return param, state
            else:
                state_shape = state.shape() if inspect.ismethod(
                    state.shape) else state.shape

                if list(state_shape) != list(param.shape):
                    raise ValueError(
                        "{} receives a shape {}, but the expected shape is {}.".
                        format(key, list(state_shape), list(param.shape)))
                return param, state
1488 1489

        matched_param_state = []
1490
        for key, param in self.state_dict(use_hook=False).items():
1491 1492 1493 1494 1495 1496 1497
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

J
Jiabin Yang 已提交
1498
        if _non_static_mode():
1499 1500 1501
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1502

1503 1504 1505 1506 1507 1508 1509
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1510 1511 1512 1513
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1514 1515 1516 1517 1518 1519 1520 1521 1522
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
1523 1524
                [param for param, state in matched_param_state], global_scope(),
                executor)
1525 1526 1527
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1528 1529 1530 1531 1532
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1533 1534 1535 1536
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1537
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1538

1539
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1540
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1541
            
C
chentianyu03 已提交
1542
        Returns:
1543
            self
C
chentianyu03 已提交
1544 1545 1546 1547

        Examples:
            .. code-block:: python

1548
                # required: skip
C
chentianyu03 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1574

1575
        '''
1576 1577 1578 1579
        return self._to_impl(device=device,
                             dtype=dtype,
                             blocking=blocking,
                             include_sublayers=True)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

        for key, buf in self._buffers.items():
            self._buffers[key] = func(buf, device, dtype, blocking)

1599 1600
        self._dtype = dtype

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    def _to_impl(self,
                 device=None,
                 dtype=None,
                 blocking=None,
                 include_sublayers=True):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

        Returns:
            self
C
chentianyu03 已提交
1623 1624 1625 1626

        '''

        if device is None and dtype is None and blocking is None:
1627
            return self
C
chentianyu03 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype

1653
            if type(dtype) is not VarDesc.VarType:
1654 1655
                dtype = convert_np_dtype_to_dtype_(dtype)

1656 1657 1658
            # 1. gpu place need to determine whether the memory is sufficient for allocation:
            if t.place.is_gpu_place():
                # for gpu, minimum memory allocation unit is 256 bytes.
1659
                size_dtype = core.size_of_dtype(dtype)
1660 1661 1662
                # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
1663 1664
                    (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
                gpu_memory_available = core.gpu_memory_available()
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy param / Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(),
                                        blocking)  # k-v type will error
                    # Release mem of t
                    t.value().get_tensor()._clear()
                else:
                    t_used = t
            else:
                t_used = t

            # 2. cast param / Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
1678 1679
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
1680
                    t_casted = t_used.cast(dtype=dtype)
1681
            else:
1682 1683 1684
                t_casted = t_used

            # 3. Copy casted cpu param / Tensor to device
1685 1686 1687 1688
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
1689 1690 1691 1692 1693

            # 4. share Tensor to origin param / Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)
C
chentianyu03 已提交
1694

1695
            return t
C
chentianyu03 已提交
1696

1697 1698
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1699
            self._apply(transform, device, dtype, blocking, include_sublayers)
1700

1701
        self._dtype = dtype
1702
        return self
C
chentianyu03 已提交
1703

1704 1705 1706
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict