Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
706a7897
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
706a7897
编写于
11月 18, 2021
作者:
Z
zhangbo9674
提交者:
GitHub
11月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix Layer.to() of device bug (#37156)
上级
34a44d59
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
12 addition
and
22 deletion
+12
-22
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+12
-22
未找到文件。
python/paddle/fluid/dygraph/layers.py
浏览文件 @
706a7897
...
...
@@ -1556,19 +1556,18 @@ class Layer(core.Layer):
if
dtype
is
None
:
dtype
=
t
.
dtype
if
type
(
dtype
)
is
str
:
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
# 1. gpu place need to determine whether the memory is sufficient for allocation:
if
t
.
place
.
is_gpu_place
():
gpu_memory_available
=
core
.
gpu_memory_available
()
# for gpu, minimum memory allocation unit is 256 bytes.
if
type
(
dtype
)
is
str
:
size_dtype
=
core
.
size_of_dtype
(
convert_np_dtype_to_dtype_
(
dtype
))
else
:
size_dtype
=
core
.
size_of_dtype
(
dtype
)
size_dtype
=
core
.
size_of_dtype
(
dtype
)
# Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
# Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
waiting_alloc_memory
=
(
(
t
.
numel
().
numpy
()[
0
]
*
size_dtype
)
/
256
+
1
)
*
256
*
1.2
(
np
.
prod
(
t
.
shape
)
*
size_dtype
)
/
256
+
1
)
*
256
*
1.2
gpu_memory_available
=
core
.
gpu_memory_available
()
if
gpu_memory_available
<
waiting_alloc_memory
:
# Copy param / Tensor to cpu
t_used
=
t
.
_copy_to
(
paddle
.
CPUPlace
(),
...
...
@@ -1582,26 +1581,17 @@ class Layer(core.Layer):
# 2. cast param / Tensor to dtype
if
dtype
is
not
None
and
dtype
!=
t_used
.
dtype
:
if
isinstance
(
t_used
,
framework
.
ParamBase
):
from
paddle.fluid.layer_helper
import
LayerHelper
helper
=
LayerHelper
(
"cast"
,
**
locals
())
t_casted
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
framework
.
_dygraph_tracer
().
trace_op
(
type
=
'cast'
,
inputs
=
{
'X'
:
t_used
},
outputs
=
{
'Out'
:
t_casted
},
attrs
=
{
'in_dtype'
:
t_used
.
dtype
,
'out_dtype'
:
convert_np_dtype_to_dtype_
(
dtype
)
})
else
:
with
paddle
.
fluid
.
framework
.
_dygraph_place_guard
(
place
=
t_used
.
place
):
t_casted
=
t_used
.
cast
(
dtype
=
dtype
)
else
:
t_casted
=
t_used
# 3. Copy casted cpu param / Tensor to device
new_t
=
t_casted
.
_copy_to
(
device
,
blocking
)
if
device
is
not
None
and
not
t_casted
.
place
.
_equals
(
device
):
new_t
=
t_casted
.
_copy_to
(
device
,
blocking
)
else
:
new_t
=
t_casted
# 4. share Tensor to origin param / Tensor
dst_tensor
=
t
.
value
().
get_tensor
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录