layers.py 57.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
28

C
chengduo 已提交
29
from . import parallel_helper
X
Xin Pan 已提交
30
from .. import unique_name
31
from paddle.fluid import core
32
from .layer_object_helper import LayerObjectHelper
33
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
34
from .base import program_desc_tracing_guard, param_guard
35
from paddle.fluid import framework
36
from ..param_attr import ParamAttr
37
from paddle.fluid.executor import Executor, global_scope
38
from paddle.fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
39
from paddle.fluid.framework import _current_expected_place as _get_device
C
chentianyu03 已提交
40
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
41
import paddle.utils.deprecated as deprecated
42

43
__all__ = ['Layer']
44

45 46 47 48 49 50 51 52
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

53

54 55 56 57 58 59 60 61 62 63 64
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
81
class Layer(core.Layer):
82 83
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
84

85
    Parameters:
86 87
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
88 89 90
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
91
        dtype(str, optional): data type of this parameter.
92 93
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
94
                Default: "float32"
95 96 97
    
    Returns:
        None
X
Xin Pan 已提交
98
    """
X
Xin Pan 已提交
99

100
    def __init__(self, name_scope=None, dtype="float32"):
101
        self.training = True
102
        if name_scope is None:
103 104
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
105
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
106
        self._built = False
M
minqiyang 已提交
107
        self._dtype = dtype
108
        self._init_in_dynamic_mode = framework.in_dygraph_mode()
109

X
Xin Pan 已提交
110
        self._parameters = collections.OrderedDict()
111 112 113
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
114
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
115
        self._loaddict_holder = collections.OrderedDict()
116

117 118 119 120
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

121 122 123
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
124
    def train(self):
125 126 127 128 129 130
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

155
        """
156 157 158 159 160
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().train_mode()
161 162 163
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
164
            layer.training = True
M
minqiyang 已提交
165 166

    def eval(self):
167 168 169 170 171 172
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

196
        """
197 198 199 200 201
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().eval_mode()
202 203 204
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
205
            layer.training = False
M
minqiyang 已提交
206

L
LielinJiang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
223

L
LielinJiang 已提交
224 225 226 227 228
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
229
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
230 231 232 233 234 235 236
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
237
        for layer in self.children():
L
LielinJiang 已提交
238 239 240 241 242 243
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
244
    def full_name(self):
245
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
246

247 248
        Returns:
            str: full name of this layer.
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
266 267 268
        """
        return self._full_name

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

286 287 288 289 290 291
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
292

293 294
                    # change the output
                    return output * 2
295

296
                linear = paddle.nn.Linear(13, 5)
297

298 299
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
300

301 302
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
303

304
                out0 = linear(in1)
305

306 307 308 309 310 311 312
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

337 338
                import paddle
                import numpy as np
339

340 341 342
                # the forward_post_hook change the input of the layer: input = input * 2
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
343

344 345 346
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
347

348
                linear = paddle.nn.Linear(13, 5)
349

350 351
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
352

353 354 355
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
356

357 358
                # remove the hook
                forward_pre_hook_handle.remove()
359

360 361 362
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
363

364 365
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
366 367 368 369 370
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

371 372
    def create_parameter(self,
                         shape,
373
                         attr=None,
374
                         dtype=None,
375 376
                         is_bias=False,
                         default_initializer=None):
377 378 379
        """Create parameters for this layer.
        
        Parameters:
380
            shape(list): Shape of the parameter.
381 382
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
383
                If set str, it can be "bool",  "float16", "float32", "float64",
384 385
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
386
            default_initializer(Initializer, optional): the default initializer for this parameter.
387
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
388
                for non-bias and bias parameter, respectively. Default: None.
389

390
        Returns:
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

412
        """
H
hong 已提交
413 414 415 416
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
417 418
                                             default_initializer)

W
wanghuancoder 已提交
419 420 421 422
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.")
423
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
424 425 426
        """

        Create Tensor for this layer.
427

428
        Parameters:
W
wanghuancoder 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
480
            dtype(str, optional): data type of this parameter.
481 482
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
483
                If set None, it will be "float32". Default: None
484

485
        Returns:
W
wanghuancoder 已提交
486
            Tensor, created Tensor.
487 488 489 490 491 492 493 494 495 496 497 498 499

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
W
wanghuancoder 已提交
500
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
501 502 503 504 505 506 507
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

508 509 510 511 512 513 514 515
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
516 517 518 519
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
520

X
polish  
Xin Pan 已提交
521
    def parameters(self, include_sublayers=True):
522
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
523

524
        Returns:
525 526 527 528 529 530 531 532 533 534
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
535
        """
536 537 538 539 540
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
541
        return ret
X
Xin Pan 已提交
542

543 544 545 546 547 548 549 550 551
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

552
                import paddle
553

554 555 556 557 558
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
559

560
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

576
                import paddle
577

578 579 580 581 582 583 584
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
585 586 587 588 589 590 591 592

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
593
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
594 595
        """Returns a list of sub layers.

596
        Parameters:
J
Jiabin Yang 已提交
597
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
598

599 600
        Returns:
            list of Layer : a list of sub layers.
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
621
        """
622 623
        ret = [
            layer
J
Jiabin Yang 已提交
624
            for _, layer in self.named_sublayers(include_self=include_self)
625
        ]
X
Xin Pan 已提交
626 627
        return ret

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

643
                import paddle
644

645 646 647 648 649
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
650 651 652 653 654

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
655
            include_self=True) if include_sublayers else zip([prefix], [self])
656 657 658 659 660 661 662 663 664
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
665
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
666 667 668 669 670 671 672
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
673
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
674 675 676 677 678 679 680

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

681
                import paddle
682

683 684 685 686 687
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
688 689 690 691 692 693 694

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
695 696 697 698 699 700 701 702
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
            for p, l in layer.named_sublayers(
                    prefix=layer_prefix, include_self=True,
                    layers_set=layers_set):
                yield p, l
703

704
    def register_buffer(self, name, tensor, persistable=True):
705
        """
706
        Registers a tensor as buffer into the layer.
707

708
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
709 710 711 712 713 714 715 716 717 718
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
719
            tensor (Tensor): the tensor to be registered as buffer.
720 721 722 723 724 725 726 727 728 729
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
730
                import paddle
731

732 733 734 735 736 737 738
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
739 740 741 742 743 744 745 746 747 748 749

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
750 751 752 753
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
754 755 756 757
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
758
        elif tensor is not None and not type(tensor) == core.VarBase:
759 760
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
761
                format(type(tensor).__name__))
762
        else:
763
            self._buffers[name] = tensor
764 765 766 767 768 769 770 771 772 773 774 775 776
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

792 793 794 795 796 797 798 799 800 801
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
802
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
803 804 805 806 807 808 809

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
810
            (string, Tensor): Tuple of name and tensor
811 812 813 814 815

        Examples:
            .. code-block:: python

                import numpy as np
816
                import paddle
817

818 819 820 821
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
822

823 824 825 826 827
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
828

829
                model = paddle.nn.Sequential(fc1, fc2)
830

831 832 833
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
834 835 836 837 838

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
839
            include_self=True) if include_sublayers else zip([prefix], [self])
840 841 842 843 844 845 846 847 848
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
849
    def clear_gradients(self):
850 851 852 853 854 855 856 857 858
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

859
                import paddle
860 861
                import numpy as np

862 863 864 865 866 867 868 869 870
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
871 872

        """
X
Xin Pan 已提交
873
        for p in self.parameters():
874 875
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
876

877
    def _build_once(self, *args, **kwargs):
878 879
        pass

880
    def __call__(self, *inputs, **kwargs):
881 882 883 884
        # NOTE(Aurelius84): Why we still need param_guard here?
        # In case of ControlFlow, true_fn and false_fn will contain
        # parameters that may not trigger logic of `Operator` to create
        # them. we add this to make sure all parameters is available.
885
        with param_guard(self._parameters), param_guard(self._buffers):
886 887 888 889 890 891 892 893 894 895
            for forward_pre_hook in self._forward_pre_hooks.values():
                hook_result = forward_pre_hook(self, inputs)
                if hook_result is not None:
                    if not isinstance(hook_result, tuple):
                        hook_result = (hook_result, )
                    inputs = hook_result

            if not self._built:
                with program_desc_tracing_guard(False):
                    self._build_once(*inputs, **kwargs)
896 897 898 899 900 901

                    # TODO(liuyuhui) Only xpu broadcast parameters here. 
                    # The other device is to call _sync_params_buffers in DataParallel 
                    # to realize the parameter synchronization among multiply cards.
                    if parallel_helper._is_data_parallel_mode(
                    ) and paddle.is_compiled_with_xpu():
902 903
                        parallel_helper._broadcast_parameters(
                            self._parameters.values())
904

905 906
                self._built = True

907
            outputs = self.forward(*inputs, **kwargs)
908

909 910 911 912
            for forward_post_hook in self._forward_post_hooks.values():
                hook_result = forward_post_hook(self, inputs, outputs)
                if hook_result is not None:
                    outputs = hook_result
913

914
            return outputs
M
minqiyang 已提交
915

916
    def forward(self, *inputs, **kwargs):
917 918 919 920 921 922 923 924
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
925
        raise NotImplementedError
X
Xin Pan 已提交
926 927 928 929

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
930 931 932
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

933
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
934

935 936 937
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
938
        Returns:
939
            Layer: the sublayer passed in.
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
966
        """
967
        assert (isinstance(sublayer, core.Layer) or sublayer == None)
968

X
Xin Pan 已提交
969 970 971 972 973 974
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

975
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
976

977 978 979
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
980
        Returns:
981
            Parameter: the parameter passed in.
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1001
        """
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1020
            raise TypeError(
1021 1022 1023 1024 1025
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
1026

1027 1028 1029
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1030

1031
                parameter.set_value(self._loaddict_holder[parameter.name])
1032

1033
            self._parameters[name] = parameter
X
Xin Pan 已提交
1034 1035
        return parameter

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
            raise TypeError("attrs should be type(dict), but received {}".
                            format(type(attrs).__name__))

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False)

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1084 1085 1086 1087 1088 1089
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1090
    def __getattr__(self, name):
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1104 1105

    def __setattr__(self, name, value):
S
songyouwei 已提交
1106 1107 1108 1109 1110
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1111 1112
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1113
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1114 1115 1116 1117
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1118
            if len(self._loaddict_holder) > 0:
1119
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1120 1121 1122 1123
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1124
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1125
            params[name] = value
1126 1127 1128 1129 1130 1131
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
1132
        else:
1133 1134 1135 1136 1137 1138 1139
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1140
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1141 1142 1143 1144 1145 1146 1147 1148
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1163 1164 1165 1166 1167
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in 
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1168 1169 1170 1171 1172 1173 1174 1175 1176
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
                        if _buffers[name] is None or type(_buffers[
                                name]) == core.VarBase:
                            _buffers[name] = assign(value)
                        else:
                            assign(value, _buffers[name])
1177
                    elif value is not None:
1178 1179 1180
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
1181 1182 1183 1184
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1185 1186
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1187 1188 1189 1190 1191 1192

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1193 1194 1195
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1196 1197 1198
        else:
            object.__delattr__(self, name)

1199 1200
    def __dir__(self):
        """
W
wanghuancoder 已提交
1201
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1202 1203

        Examples:
1204 1205 1206
            .. code-block:: python
                import paddle
                import numpy as np
1207

1208 1209 1210 1211 1212
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1213
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1214 1215
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1216

1217 1218 1219 1220
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

H
hong 已提交
1262 1263 1264 1265
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
1266
        '''
1267
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1268

1269
        Parameters:
1270 1271
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
H
hong 已提交
1272 1273

        Retruns:
1274
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1275 1276

        Examples:
1277 1278
            .. code-block:: python

1279
                import paddle
H
hong 已提交
1280

1281 1282 1283 1284
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1285 1286 1287

        '''

1288 1289 1290 1291
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
1292
                destination[structured_name_prefix + name] = data
1293 1294 1295
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer
1296 1297 1298 1299 1300 1301

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
1302 1303 1304
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
1305 1306 1307
                    destination = destination_temp
        return destination

1308
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1309
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1310
        '''
1311
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1312

1313
        Parameters:
1314 1315
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
1316
                                                  Default: True
H
hong 已提交
1317 1318 1319 1320
        Returns:
            None

        Examples:
1321 1322
            .. code-block:: python

1323
                import paddle
1324

1325
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1326

1327
                state_dict = emb.state_dict()
1328 1329
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1330
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1331

H
hong 已提交
1332 1333
        '''

1334 1335 1336 1337 1338
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
1339 1340 1341
            state_shape = state.shape() if inspect.ismethod(
                state.shape) else state.shape
            if list(state_shape) != list(param.shape):
1342 1343
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
1344
                    format(key, list(state_shape), list(param.shape)))
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            return param, state

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1360

1361 1362 1363 1364 1365 1366 1367
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1368 1369 1370 1371
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    def _apply(self, func, device, dtype, blocking):
        for layer in self.children():
            layer._apply(func, device, dtype, blocking)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)
                    assert param.is_leaf
                    param_applied.stop_gradient = param.stop_gradient
                    self._parameters[key] = param_applied

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

                        grad_applied.stop_gradient = param._grad_ivar(
                        ).stop_gradient
                        self._parameters[key]._set_grad_ivar(grad_applied)

        for key, buf in self._buffers.items():
            self._buffers[key] = func(buf, device, dtype, blocking)

    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored. 
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the 
            index of the GPUs or XPUs. Default: None. 
            
            dtype(str|core.VarDesc.VarType|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
    

        '''

        if device is None and dtype is None and blocking is None:
            return

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype

            new_t = t._copy_to(device, blocking)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            if isinstance(t, framework.ParamBase):
                if dtype is not None and dtype != t.dtype:
                    framework._dygraph_tracer().trace_op(
                        type='cast',
                        inputs={'X': new_t},
                        outputs={'Out': new_t},
                        attrs={
                            'in_dtype': t.dtype,
                            'out_dtype': convert_np_dtype_to_dtype_(dtype)
                        })
            else:
                if dtype is not None and dtype != t.dtype:
                    new_t = new_t.cast(dtype=dtype)
C
chentianyu03 已提交
1500 1501 1502 1503 1504

            return new_t

        self._apply(transform, device, dtype, blocking)

1505 1506 1507
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict