analysis_predictor.cc 90.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
30
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
36
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/framework/var_type_traits.h"
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/inference/analysis/helper.h"
40
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
41
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
42
#include "paddle/fluid/inference/api/helper.h"
43
#include "paddle/fluid/inference/api/infer_context.h"
44
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
45
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
46
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
47
#include "paddle/fluid/inference/api/resource_manager.h"
48
#include "paddle/fluid/inference/utils/io_utils.h"
49
#include "paddle/fluid/inference/utils/model_utils.h"
50
#include "paddle/fluid/inference/utils/singleton.h"
51
#include "paddle/fluid/memory/memcpy.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
53
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
54
#include "paddle/fluid/platform/device_context.h"
55
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
56
#include "paddle/fluid/platform/profiler.h"
57
#include "paddle/phi/api/ext/op_meta_info.h"
58 59
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
60
#include "paddle/phi/common/place.h"
W
Wilber 已提交
61
#include "paddle/phi/core/enforce.h"
62 63
#include "paddle/utils/string/split.h"

64
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
65 66 67 68
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
69

70 71 72 73
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

74 75 76 77
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

Y
Yan Chunwei 已提交
82 83
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
84
#include "paddle/fluid/inference/tensorrt/helper.h"
85
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
86 87
#endif

88 89 90 91
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

92 93
namespace paddle {

N
nhzlx 已提交
94
using inference::Singleton;
N
nhzlx 已提交
95
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
96 97
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
98
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
99
#endif
100

101 102
int AnalysisPredictor::clone_num_ = 1;

103 104 105 106
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
107 108
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
109 110 111 112
    return true;
  }
  return false;
}
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

W
Wilber 已提交
132
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
133
  switch (backend) {
W
Wilber 已提交
134
    case paddle_infer::PlaceType::kGPU:
135 136
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
W
Wilber 已提交
137
    case paddle_infer::PlaceType::kNPU:
138
      return phi::Backend::NPU;
W
Wilber 已提交
139
    case paddle_infer::PlaceType::kXPU:
140
      return phi::Backend::XPU;
W
Wilber 已提交
141
    case paddle_infer::PlaceType::kCPU:
142
      return phi::Backend::CPU;
W
Wilber 已提交
143 144
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
145 146 147 148 149 150 151
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
152 153
}  // namespace

C
ccrrong 已提交
154 155
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
                             framework::LoDTensor *t,
156
                             const platform::Place &place) {
157
  framework::DDim ddim = phi::make_ddim(pt.shape);
158 159 160 161 162 163 164
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
165 166
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
167 168 169 170
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
171 172 173 174 175 176 177 178 179 180 181 182 183 184
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
  if (has_zero_dim) {
    VLOG(3) << "Found zero dim from input with ddim: " << ddim;
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
  }
185 186 187

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
188 189 190 191
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
192 193
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
194 195
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
196 197 198 199
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
200
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
201 202
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
203 204
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
205
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
206
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
207
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
208
    auto dst_gpu_place = place;
C
ccrrong 已提交
209 210 211 212 213
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
214 215 216 217 218
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
219 220
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
221
    auto dst_xpu_place = place;
C
ccrrong 已提交
222 223 224 225 226
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
227 228 229 230 231 232 233
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
234 235 236 237 238 239 240 241 242 243
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
244
bool AnalysisPredictor::Init(
245 246
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
247
  VLOG(3) << "Predictor::init()";
248 249
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
250 251
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
252
    platform::EnableProfiler(tracking_device);
253
  } else {
254 255
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
256 257
  }

258
  // no matter with or without MKLDNN
L
luotao1 已提交
259
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
260

261 262 263
  if (!PrepareScope(parent_scope)) {
    return false;
  }
264 265 266

  InitPlace();

267 268 269 270 271 272 273
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

274 275 276
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

277 278 279
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
280
  }
281

282 283 284 285 286 287 288 289 290 291 292 293 294
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
295
        static_cast<phi::GPUContext *>(
296 297 298 299 300 301
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
302
  }
303
#endif
304
  inference::DisplayMemoryInfo(place_, "Init predictor");
305 306
  return true;
}
307

308
void AnalysisPredictor::InitPlace() {
309
  if (config_.use_gpu()) {
C
ccrrong 已提交
310 311
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
312 313
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
314
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
315
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
316
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
317 318
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
319 320
    }
#endif
321
  } else if (config_.use_xpu()) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
345 346 347 348 349 350 351 352
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
369 370 371 372 373 374 375
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
376 377 378 379 380 381 382 383 384
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
385
#endif
386 387 388
  } else {
    place_ = paddle::platform::CPUPlace();
  }
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
406
          auto *gpu_context = new InferGPUContext(place_);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
428
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
429
          gpu_context->SetBlasTensorCoreHandle(
430 431 432 433 434 435 436 437
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
532 533
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
534 535 536 537 538
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
539 540 541 542 543
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
544 545 546 547 548 549 550 551
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
552 553 554
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
574 575
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
576 577 578 579 580 581 582 583 584
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
585 586
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
587 588
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
589 590 591
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
592 593 594
  }
}

595
bool AnalysisPredictor::PrepareExecutor() {
596
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
597 598 599 600 601
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
602 603
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
604 605
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
606

607 608 609
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
610

611 612 613
  return true;
}

614
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
651 652 653 654 655 656 657
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
694 695 696 697 698 699
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
700 701 702 703 704 705 706 707 708 709 710
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
711 712 713 714 715
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
772 773
      static_cast<bool>(fin.is_open()),
      true,
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

846 847
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
848 849 850 851 852 853 854 855 856 857 858 859
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
860
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
861 862 863
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
864 865 866
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
867 868
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
869 870 871
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
872 873 874
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
875
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
876
  }
877 878 879
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

880 881 882 883 884 885
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
886 887 888 889
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
890 891 892 893 894 895 896 897
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
898 899 900
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
901 902 903 904
  }
#endif
}

905 906 907
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
908
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
909 910 911
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
912
  VLOG(3) << "Predictor::predict";
913 914 915 916
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
917 918 919
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
920 921
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
922
    return false;
923
  }
M
Michal Gallus 已提交
924

925 926 927 928 929 930 931 932 933
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

934 935 936
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
937

938 939 940 941
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
942
  }
Y
Yan Chunwei 已提交
943

M
minqiyang 已提交
944
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
945

Y
Yan Chunwei 已提交
946 947 948 949 950
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
951 952 953
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
954
  tensor_array_batch_cleaner_.ResetNoTensorVars();
955 956 957 958

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
959 960
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
961
#endif
962
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
963 964 965 966
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
967
#endif
968 969
  return true;
}
970

971 972
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
973
  VLOG(3) << "Predictor::set_feed";
974 975 976 977 978 979 980 981 982 983
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
984 985
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
986 987 988
      return false;
    }
    int idx = -1;
989
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
990 991
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
992 993
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
994 995
      }
      idx = feed_names_[name];
996
    } else {
R
Ruibiao Chen 已提交
997
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
998
    }
999
    framework::SetFeedVariable(scope, *input, "feed", idx);
1000 1001 1002 1003 1004 1005 1006 1007
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
1008
  auto shape = phi::vectorize(fetch.dims());
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1026
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1027 1028
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1029
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1030
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1031 1032
        static_cast<size_t>(idx),
        i,
1033
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1034 1035
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1036
            i));
1037
    framework::FetchType &fetch_var =
1038
        framework::GetFetchVariable(*scope, "fetch", idx);
R
Ruibiao Chen 已提交
1039
    auto &fetch = PADDLE_GET(framework::LoDTensor, fetch_var);
1040
    auto type = framework::TransToProtoVarType(fetch.dtype());
1041
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1042
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1043
    if (type == framework::proto::VarType::FP32) {
1044 1045
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1046
    } else if (type == framework::proto::VarType::INT64) {
1047 1048
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1049 1050 1051
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1052 1053 1054
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1055
    } else {
1056 1057
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1058 1059
    }
  }
Y
Yan Chunwei 已提交
1060 1061
  return true;
}
1062

1063
void AnalysisPredictor::PrepareArgument() {
1064
  argument_.SetUseGPU(config_.use_gpu());
1065
  argument_.SetUseFcPadding(config_.use_fc_padding());
1066
  argument_.SetGPUDeviceId(config_.gpu_device_id());
1067
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
1068
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
1069
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1070
  // Analyze inference_program
1071
  argument_.SetPredictorID(predictor_id_);
1072
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
1073 1074
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1075
  } else {
C
ccrrong 已提交
1076 1077
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1078 1079
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1080

1081 1082
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1083
  }
1084 1085
  // For JITLayer
  argument_.SetSkipLoadParams(config_.skip_load_params_);
1086

1087
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
1088
  argument_.SetTensorRtUseOSS(config_.trt_use_varseqlen_);
1089
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
1090 1091
  argument_.SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_.SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
1092 1093 1094 1095 1096
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
1097
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1098
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1099 1100 1101
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
1102
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
1103
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
1104 1105
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
1106
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
1107
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
1108
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
1109 1110 1111
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
1112
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
W
Wojciech Uss 已提交
1113
  }
1114

D
denglin-github 已提交
1115 1116 1117 1118
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
D
denglin-github 已提交
1119 1120 1121 1122 1123 1124 1125 1126
    argument_.SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_.SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_.SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_.SetDlnneDisableNodesByOutputs(
        config_.dlnne_disable_nodes_by_outputs_);
    argument_.SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_.SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
    argument_.SetDlnnePrecisionMode(config_.dlnne_precision_mode_);
D
denglin-github 已提交
1127 1128
  }

石晓伟 已提交
1129
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
1130 1131
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
1132 1133 1134
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
1135 1136 1137
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
1138 1139 1140 1141 1142
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
1143
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1164 1165 1166
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1167
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
1168 1169
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
1170
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
1171 1172
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
1173 1174 1175 1176 1177
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
1178 1179
  argument_.SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_.SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1180
#endif
J
jianghaicheng 已提交
1181

1182 1183 1184
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

1185
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1186
    LOG(INFO) << "MKLDNN is enabled";
1187 1188 1189
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

1190 1191 1192 1193 1194 1195 1196 1197
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1198 1199 1200 1201
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
B
baoachun 已提交
1202 1203 1204 1205 1206 1207

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
    argument_.SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_.SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_.SetQuantVarScales({});
1208
    argument_.SetCalibrationFilePath(config_.calibration_file_path_);
B
baoachun 已提交
1209
  }
1210 1211
#endif

1212
  auto passes = config_.pass_builder()->AllPasses();
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
    passes.clear();
    if (config_.tensorrt_engine_enabled()) {
      for (const auto &pass : kTrtLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    } else if (config_.use_gpu()) {
      for (const auto &pass : kGpuLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    }

    const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses();
    for (const auto &it : deleted_passes) {
      auto iterator = std::find(passes.begin(), passes.end(), it);
      if (iterator != passes.end()) {
        passes.erase(iterator);
      }
    }

    if (config_.ir_debug_) {
      auto it = std::begin(passes);
      while (it != std::end(passes)) {
        if (*it != "graph_viz_pass") {
          it = passes.insert(it + 1, "graph_viz_pass");
        } else {
          ++it;
        }
      }
    }
  }
Y
Yan Chunwei 已提交
1247 1248 1249 1250
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
1251
  argument_.SetDisableLogs(config_.glog_info_disabled());
1252
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
1253
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
1254
  argument_.SetScopeNotOwned(scope_.get());
1255

1256
  // mixed precison.
1257
  argument_.SetModelPrecision(static_cast<int>(model_precision_));
1258
  argument_.SetMixedBlackList(config_.mixed_black_list_);
1259 1260 1261 1262 1263
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1274 1275
  Analyzer().Run(&argument_);

1276
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1277 1278
      argument_.scope_valid(),
      true,
1279
      platform::errors::InvalidArgument("The argument scope should be valid."));
1280 1281
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1282
  inference_program_.reset(
1283 1284 1285 1286 1287
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
#if PADDLE_WITH_TENSORRT
W
Wilber 已提交
1288 1289 1290 1291
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1292
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1293
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1294
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1306 1307 1308
#endif
        delete prog;
      });
1309 1310 1311 1312
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1313
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1314
}
1315 1316

template <>
1317 1318 1319
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1320 1321
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1322 1323 1324 1325
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1326
  VLOG(3) << "create AnalysisConfig";
1327
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1328 1329
      config.is_valid(),
      true,
1330 1331
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1332

1333 1334 1335 1336
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1337
                 []() { inference::RegisterAllCustomOperator(); });
1338

1339
  if (config.use_gpu()) {
1340 1341 1342 1343 1344 1345
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1346 1347
          config.memory_pool_init_size_mb(),
          0.f,
1348 1349 1350
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1351 1352
          config.gpu_device_id(),
          0,
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1366

1367 1368 1369 1370 1371 1372 1373
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1374 1375 1376 1377 1378 1379 1380 1381 1382
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1398 1399 1400 1401 1402 1403
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1404 1405 1406 1407
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1408 1409
  // Each config can only be used for one predictor.
  config.SetInValid();
1410 1411
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1412 1413 1414 1415
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1416 1417 1418 1419 1420
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1421 1422
    return nullptr;
  }
1423

G
Gabor Buella 已提交
1424
  return predictor;
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1439
void AnalysisPredictor::PrepareFeedFetch() {
1440 1441 1442
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1443
  CreateFeedFetchVar(sub_scope_);
1444 1445
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
1446
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1447 1448 1449 1450 1451
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1452
      idx2feeds_[idx] = op->Output("Out")[0];
1453
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
1454
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1455 1456
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1457
      }
Y
Yan Chunwei 已提交
1458
      fetches_[idx] = op;
N
nhzlx 已提交
1459
      idx2fetches_[idx] = op->Input("X")[0];
1460 1461 1462 1463
    }
  }
}

1464
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1465 1466 1467
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1468
  auto *var = scope->Var("feed");
1469
  var->GetMutable<framework::FeedList>();
1470
  var = scope->Var("fetch");
1471
  var->GetMutable<framework::FetchList>();
1472 1473
}

N
nhzlx 已提交
1474 1475 1476 1477 1478 1479 1480 1481
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1482 1483 1484 1485 1486 1487
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1488 1489 1490
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1491 1492 1493 1494 1495
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1527 1528 1529 1530 1531 1532 1533 1534
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1535 1536
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1537
  framework::Scope *scope;
1538
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1539 1540 1541 1542 1543 1544 1545 1546
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1547
  PADDLE_ENFORCE_NOT_NULL(
1548
      scope->FindVar(name),
1549
      platform::errors::PreconditionNotMet(
1550
          "The variable named %s is not found in the scope of the executor.",
1551
          name));
1552 1553
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1554 1555
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1556 1557
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1558 1559 1560 1561
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1562
  } else if (platform::is_xpu_place(place_)) {
1563 1564 1565 1566 1567 1568 1569 1570
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1571
      auto xpu_place = place_;
1572 1573
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1574
  } else if (platform::is_npu_place(place_)) {
1575
    auto npu_place = place_;
W
Wilber 已提交
1576
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1577 1578 1579 1580 1581 1582
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1583
  } else {
1584
    auto gpu_place = place_;
N
nhzlx 已提交
1585 1586
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1587 1588 1589 1590 1591
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1592
  framework::Scope *scope;
1593
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1594 1595 1596 1597 1598 1599 1600 1601
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1602
  PADDLE_ENFORCE_NOT_NULL(
1603
      scope->FindVar(name),
1604
      platform::errors::PreconditionNotMet(
1605
          "The variable named %s is not found in the scope of the executor.",
1606
          name));
1607 1608
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1609 1610
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1611 1612
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1613 1614 1615 1616
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1617
  } else if (platform::is_xpu_place(place_)) {
1618 1619 1620 1621 1622 1623 1624 1625
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1626
      auto xpu_place = place_;
1627 1628
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1629
  } else if (platform::is_npu_place(place_)) {
1630
    auto npu_place = place_;
W
Wilber 已提交
1631
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1632 1633 1634 1635 1636 1637
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1638
  } else {
1639
    auto gpu_place = place_;
N
nhzlx 已提交
1640 1641
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1642 1643 1644 1645
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1646
  inference::DisplayMemoryInfo(place_, "before run");
1647
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1658 1659 1660
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1661
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1683
  executor_->Run();
1684
  inference::DisplayMemoryInfo(place_, "after run");
1685 1686 1687 1688 1689

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1690
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1691
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1692
  tensor_array_batch_cleaner_.ResetTensorArray();
1693 1694 1695 1696

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1697 1698 1699
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1700 1701 1702
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1703
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1704 1705 1706 1707 1708
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1709 1710 1711
  return true;
}

W
Wilber 已提交
1712 1713
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
1739 1740 1741 1742
  return ZeroCopyRun();
}
#endif

1743 1744 1745 1746 1747 1748
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1749
    auto gpu_place = place_;
L
Leo Chen 已提交
1750
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(gpu_place));
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
1765 1766
    auto tensor = var->Get<framework::LoDTensor>();
    framework::DDim dim = tensor.dims();
1767 1768 1769
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
    if (tensor.dtype() == paddle::experimental::DataType::INT32 &&
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
      if (tensor.place() == platform::CPUPlace()) {
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int));
      } else if (tensor.place() == platform::CUDAPlace()) {
#if defined(PADDLE_WITH_CUDA)
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CUDAPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int),
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
1798 1799 1800 1801 1802 1803 1804
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
1860 1861
}

1862 1863
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1864
  std::string filename;
1865 1866
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1867
  } else if (!config_.prog_file().empty()) {
1868 1869 1870
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1871
    filename = config_.prog_file();
1872
  } else {
1873
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1874 1875 1876 1877
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1878
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
1879 1880
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1881
        config_.params_file());
1882 1883
    return false;
  }
1884 1885 1886

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1887
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1888 1889 1890
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1891
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1892 1893
        static_cast<bool>(fin.is_open()),
        true,
1894 1895 1896
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1897 1898 1899 1900 1901 1902 1903 1904
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1905
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1906
  }
1907 1908 1909 1910 1911 1912
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1913 1914
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1936
      if (!config_.params_file().empty()) {
1937 1938 1939 1940 1941 1942
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1943
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1944 1945 1946 1947 1948
        op->CheckAttrs();
      }
    }
  }

1949
  if (!config_.params_file().empty()) {
1950 1951 1952 1953 1954 1955
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1956
    op->SetAttr("file_path", {config_.params_file()});
1957 1958 1959 1960
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1961
  framework::NaiveExecutor e(place_);
1962 1963 1964 1965
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1966 1967
  return true;
}
1968

1969 1970 1971 1972 1973
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1993
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1994
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
1995 1996
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
1997 1998
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1999 2000 2001
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2002
      std::string engine_name = PADDLE_GET_CONST(
2003
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2004
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2005 2006 2007 2008
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2009 2010
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2011
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2012
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2013 2014
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2015 2016 2017
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2018

N
nhzlx 已提交
2019
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2020 2021 2022
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2023

N
nhzlx 已提交
2024 2025 2026 2027 2028
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
2029
      std::string calibration_table_data_path =
N
nhzlx 已提交
2030 2031 2032 2033
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2034 2035 2036 2037 2038

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2039 2040 2041 2042
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2043
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2044 2045
  return true;
}
N
nhzlx 已提交
2046
#endif
N
nhzlx 已提交
2047

2048
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
2049
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2050
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2051 2052
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2053 2054
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2055
#endif
2056
  if (config_.with_profile_) {
2057 2058 2059 2060
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2070 2071
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2072

2073 2074 2075 2076 2077 2078
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2079

2080 2081 2082
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2083 2084 2085 2086 2087
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
2088 2089 2090
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2091
  device_contexts_.clear();
2092 2093
}

2094
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
2095
  std::lock_guard<std::mutex> lk(clone_mutex_);
2096
  auto *x = new AnalysisPredictor(config_);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
  x->status_is_cloned_ = true;
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2108
  x->Init(scope_, inference_program_);
2109
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2110 2111 2112
  return std::unique_ptr<PaddlePredictor>(x);
}

2113
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2114 2115 2116
  return inference_program_->Proto()->SerializeAsString();
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
2156
template <>
2157 2158
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2159
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2160 2161
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2162 2163
}

2164
}  // namespace paddle
2165 2166 2167

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2168 2169 2170
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2171 2172
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2173
USE_TRT_CONVERTER(elementwise_pow_weight);
2174 2175 2176 2177 2178 2179 2180
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
2181
USE_TRT_CONVERTER(transpose);
2182
USE_TRT_CONVERTER(transpose2);
2183
USE_TRT_CONVERTER(flatten);
2184
USE_TRT_CONVERTER(flatten_contiguous_range);
2185
USE_TRT_CONVERTER(matmul);
2186
USE_TRT_CONVERTER(matmul_v2);
X
xiaoxiaohehe001 已提交
2187
USE_TRT_CONVERTER(bmm);
2188 2189
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Z
zhupengyang 已提交
2190 2191
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
2192 2193 2194 2195 2196 2197 2198 2199 2200
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2201 2202
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2203
USE_TRT_CONVERTER(split);
2204 2205
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2206
USE_TRT_CONVERTER(leaky_relu);
2207 2208
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2209
USE_TRT_CONVERTER(silu);
2210
USE_TRT_CONVERTER(group_norm);
2211
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2212 2213 2214
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2215 2216
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
2217
USE_TRT_CONVERTER(slice);
2218
USE_TRT_CONVERTER(scale);
2219
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2220
USE_TRT_CONVERTER(clip);
2221
USE_TRT_CONVERTER(gather);
2222
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2223
USE_TRT_CONVERTER(yolo_box);
2224
USE_TRT_CONVERTER(yolo_box_head);
2225
USE_TRT_CONVERTER(arg_max);
2226
USE_TRT_CONVERTER(roi_align);
2227
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2228
USE_TRT_CONVERTER(multiclass_nms);
2229
USE_TRT_CONVERTER(multiclass_nms3);
2230
USE_TRT_CONVERTER(nearest_interp);
2231
USE_TRT_CONVERTER(nearest_interp_v2);
2232
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2233
USE_TRT_CONVERTER(reshape);
2234
USE_TRT_CONVERTER(reshape2);
2235 2236
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2237
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
2238
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2239 2240
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2241
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2242
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2243
USE_TRT_CONVERTER(pool3d)
2244 2245
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
2246 2247
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2248
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2249
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2250 2251
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2252
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2253
USE_TRT_CONVERTER(cast)
2254 2255
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2256
USE_TRT_CONVERTER(equal);
2257 2258
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2259 2260
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2261 2262
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2263
USE_TRT_CONVERTER(fill_constant)
2264
USE_TRT_CONVERTER(fused_token_prune)
W
wenbin 已提交
2265
USE_TRT_CONVERTER(layernorm_shift_partition)
2266 2267
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2268 2269 2270 2271
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2272
#endif
W
Wilber 已提交
2273 2274 2275 2276 2277 2278

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2289 2290 2291 2292
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2293 2294 2295 2296 2297 2298 2299 2300 2301
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2302 2303 2304 2305
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2306 2307 2308 2309 2310
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2311 2312 2313 2314

std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2315 2316

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2317
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2318 2319 2320 2321 2322 2323 2324
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2325
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2326 2327 2328 2329
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2330 2331
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2332 2333 2334 2335 2336 2337 2338 2339
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2340 2341
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2342 2343
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2378 2379 2380 2381
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2382 2383 2384 2385 2386
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
W
Wilber 已提交
2387
                             paddle_infer::PlaceType backend,
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2413 2414
      size,
      1UL,
W
Wilber 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2433 2434
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2435
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2436 2437
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2438 2439 2440 2441 2442 2443 2444
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2465

2466 2467 2468 2469 2470 2471
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2472

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2487 2488 2489 2490 2491
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2492
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2502
}  // namespace experimental
W
Wilber 已提交
2503
}  // namespace paddle_infer