strided_slice_op.h 24.1 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26
static void StridedSliceOutDims(
27 28
    const std::vector<int64_t>& starts, const std::vector<int64_t>& ends,
    const std::vector<int64_t>& strides, const std::vector<int>& axes,
29
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30
    const std::vector<int>& decrease_axis, int64_t* out_dims_vector,
31
    const size_t size, bool infer_shape) {
32 33 34
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
35
  int64_t stride_index, start_index, end_index;
36 37
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57 58 59
    PADDLE_ENFORCE_NE(stride_index, 0,
                      platform::errors::InvalidArgument(
                          "stride index in StridedSlice operator is 0."));
60 61
    int64_t axis_size = in_dims[axes_index];

62 63 64 65 66 67 68 69
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
70 71 72
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
73 74 75 76 77 78 79
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

80 81 82
    bool neg_dim_condition = ((stride_index < 0 && (start_index < end_index)) ||
                              (stride_index > 0 && (start_index > end_index)));
    PADDLE_ENFORCE_EQ(neg_dim_condition, false,
83 84 85
                      platform::errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));
86 87 88 89 90 91

    int64_t left =
        std::max(static_cast<int64_t>(0), std::min(start_index, end_index));
    int64_t right = std::min(axis_size, std::max(start_index, end_index));
    int64_t step = std::abs(stride_index);

92 93 94 95 96 97
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

98 99 100
static void StridedSliceFunctor(int64_t* starts, int64_t* ends,
                                int64_t* strides, int* axes, int* reverse_axis,
                                const framework::DDim dims,
101 102
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
103 104
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
105
    int64_t axis_size = dims[axes[axis]];
W
wangchaochaohu 已提交
106 107 108 109 110 111
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
112 113 114 115 116 117 118 119 120
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
121 122 123 124 125
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }
    if (ends[axis_index] < 0) {
126 127 128
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
129 130 131
        if (ends[axis_index] < 0) {
          ends[axis_index] = 0;
        }
132
      }
W
wangchaochaohu 已提交
133
    }
134 135 136 137 138 139 140
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
141 142 143 144 145 146

    if ((starts[axis_index] < 0) && (axis_size > 0)) {
      starts[axis_index] += axis_size;
      starts[axis_index] = std::max<int64_t>(starts[axis_index], 0);
    }

W
wangchaochaohu 已提交
147 148 149 150 151
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
152 153
        auto end_dim = axis_size - 1 < starts[axis_index] ? axis_size - 1
                                                          : starts[axis_index];
154 155 156 157 158
        auto offset = (end_dim - ends[axis_index]) % strides[axis_index];
        offset = offset == 0 ? strides[axis_index] : offset;

        starts[axis_index] = starts[axis_index] + offset;
        ends[axis_index] = ends[axis_index] + offset;
W
wangchaochaohu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
172 173 174 175 176
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();
W
wangchaochaohu 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
204 205 206 207 208 209 210 211 212 213 214

    framework::DDim in_dims;
    auto* input_var = context.InputVar("Input");

    bool is_input_var_array = input_var->IsType<LoDTensorArray>();
    if (is_input_var_array) {
      const int64_t size = input_var->Get<framework::LoDTensorArray>().size();
      in_dims = framework::make_ddim({size});
    } else {
      in_dims = context.Input<framework::Tensor>("Input")->dims();
    }
W
wangchaochaohu 已提交
215

216 217 218 219 220 221 222 223
    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
224
    auto axes = context.Attr<std::vector<int>>("axes");
225
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
226
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
227 228 229 230 231 232

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

233 234 235 236 237 238 239 240
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
241
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
242 243
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
244
      starts = GetDataFromTensor<int64_t>(starts_tensor);
245 246 247
    }

    if (list_new_ends_tensor.size() > 0) {
248
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
249 250
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
251
      ends = GetDataFromTensor<int64_t>(ends_tensor);
252 253 254
    }

    if (list_new_strides_tensor.size() > 0) {
255
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
256 257
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
258
      strides = GetDataFromTensor<int64_t>(strides_tensor);
259 260
    }

261
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
262
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
263 264
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
265 266
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
267 268
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
269 270
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
271 272 273 274 275

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
276
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
277 278 279 280 281 282 283 284 285
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

286 287
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
288
      std::vector<int64_t> new_out_shape;
289
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
290 291 292 293 294
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
295 296 297 298 299 300 301 302 303 304 305 306 307 308
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

309 310 311 312 313 314 315 316
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    if (is_input_var_array) {
      PADDLE_ENFORCE_EQ(
          starts_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of start index  should be 1, but received %d.",
              starts_indices.size()));

      PADDLE_ENFORCE_EQ(
          ends_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of end index should be 1, but received %d.",
              ends_indices.size()));

      PADDLE_ENFORCE_EQ(
          strides_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of stride should be 1, but received %d.",
              strides_indices.size()));

      auto* output_var = context.OutputVar("Out");

      PADDLE_ENFORCE_EQ(
          output_var->IsType<LoDTensorArray>(), true,
          platform::errors::InvalidArgument(
              "When the input of `strided_slice_op` is `TensorArray`. The "
              "output is excepted `TensorArray` , but received %s.",
              framework::ToTypeName(output_var->Type())));

      PADDLE_ENFORCE_EQ(
          out_dims_origin.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of Output should be 1, but received %d",
              out_dims_origin.size()));

      auto& in_array = input_var->Get<framework::LoDTensorArray>();

      auto* out_array = context.Output<framework::LoDTensorArray>("Out");

      out_array->resize(out_dims_origin[0]);
      size_t const in_array_size = in_array.size();
      for (size_t i = 0; i < out_array->size(); i++) {
        size_t in_offset =
            (starts_indices[0] % in_array_size) + i * strides_indices[0];

        int64_t out_offset = i;
        if (need_reverse) {
          out_offset = out_array->size() - i - 1;
        }

        auto& in_tensor = in_array.at(in_offset);
        PADDLE_ENFORCE_GT(
            in_tensor.memory_size(), 0,
            platform::errors::PreconditionNotMet(
                "The input LoDTensorArray Input[%d] holds no memory.",
                in_offset));
        auto* out_tensor = &out_array->at(out_offset);

        out_tensor->set_lod(in_tensor.lod());
        TensorCopy(in_tensor, context.GetPlace(), out_tensor);
      }

382
    } else {
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
      auto in = context.Input<framework::Tensor>("Input");
      auto out = context.Output<framework::Tensor>("Out");
      out->Resize(out_dims);
      out->mutable_data<T>(context.GetPlace());
      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*in);
      auto out_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*out, out_dims);
      if (need_reverse) {
        framework::Tensor tmp;
        tmp.mutable_data<T>(out_dims, context.GetPlace());
        auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                            Eigen::DenseIndex>::From(tmp);
        tmp_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
        out_t.device(place) = tmp_t.reverse(reverse_axis);
      } else {
        out_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      }
404

405 406 407
      if (decrease_axis.size() > 0) {
        out->Resize(out_dims_origin);
      }
408
    }
W
wangchaochaohu 已提交
409 410 411 412 413 414 415
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
416 417 418 419 420
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();
W
wangchaochaohu 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();

    auto& dev_ctx = context.template device_context<DeviceContext>();
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

    framework::DDim out_dims;
    auto* out_var = context.OutputVar(framework::GradVarName("Input"));
    bool is_out_var_array = out_var->IsType<LoDTensorArray>();
    if (is_out_var_array) {
      // Note(weixin):Since the shape of `framework::GradVarName("Input")` of
      // StridedSliceGrad cannot be calculated by
      // `framework::GradVarName("Output")`, the dim of "Input" is used to
      // calculate the output shape. when set it to inplace OP, there may be
      // some problems.
      const int64_t size =
          context.Input<framework::LoDTensorArray>("Input")->size();

      out_dims = framework::make_ddim({size});
    } else {
      out_dims =
          context.Output<framework::Tensor>(framework::GradVarName("Input"))
              ->dims();
    }
470 471 472 473 474 475 476 477 478

    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
479
    auto axes = context.Attr<std::vector<int>>("axes");
480 481
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
482

483 484 485 486 487 488 489 490
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
491
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
492 493
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
494
      starts = GetDataFromTensor<int64_t>(starts_tensor);
495 496 497
    }

    if (list_new_ends_tensor.size() > 0) {
498
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
499 500
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
501
      ends = GetDataFromTensor<int64_t>(ends_tensor);
502 503 504
    }

    if (list_new_strides_tensor.size() > 0) {
505
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
506 507
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
508
      strides = GetDataFromTensor<int64_t>(strides_tensor);
509 510
    }

W
wangchaochaohu 已提交
511 512 513 514 515 516 517 518
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
519 520
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

535 536 537 538 539 540 541 542
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    if (is_out_var_array) {
      PADDLE_ENFORCE_EQ(
          starts_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
              "dimension of start index  should be 1, but received %d.",
              starts_indices.size()));
      PADDLE_ENFORCE_EQ(
          ends_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of end index should be 1, but received %d.",
              ends_indices.size()));
      PADDLE_ENFORCE_EQ(
          strides_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
              "dimension of stride should be 1, but received %d.",
              strides_indices.size()));

      auto* d_input_var = context.InputVar(framework::GradVarName("Out"));

      PADDLE_ENFORCE_EQ(
          d_input_var->IsType<LoDTensorArray>(), true,
          platform::errors::InvalidArgument(
              "When the output of `strided_slice_grad_op` is "
              "`TensorArray`, the input is excepted `TensorArray` , "
              "but received %s.",
              framework::ToTypeName(d_input_var->Type())));

      PADDLE_ENFORCE_EQ(
          out_dims.size(), 1,
          platform::errors::InvalidArgument(
              "When the output of `strided_slice_grad_op` is `TensorArray`, "
              "the dimension of output should be 1, but received %d.",
              out_dims.size()));
      auto& d_in_array = d_input_var->Get<framework::LoDTensorArray>();

      auto* d_out_array = context.Output<framework::LoDTensorArray>(
          framework::GradVarName("Input"));

      d_out_array->resize(out_dims[0]);
      auto const d_out_array_size = d_out_array->size();
      auto* input_tensor_array =
          context.Input<framework::LoDTensorArray>("Input");

      for (size_t j = 0; j < d_out_array_size; j++) {
        auto& dim = input_tensor_array->at(j).dims();
        auto* d_out_tensor = &d_out_array->at(j);

        int64_t sub = j - starts_indices[0];

        int64_t in_offset = sub / strides_indices[0];

        if (need_reverse) {
          in_offset = d_in_array.size() - in_offset - 1;
        }

        if ((sub % strides_indices[0] == 0) && (0 <= in_offset) &&
            (static_cast<size_t>(in_offset) < d_in_array.size())) {
          auto& in_tensor = d_in_array.at(in_offset);
          PADDLE_ENFORCE_GT(
              in_tensor.memory_size(), 0,
              platform::errors::PreconditionNotMet(
                  "The input LoDTensorArray Input[%d] holds no memory.",
                  in_offset));

          d_out_tensor->set_lod(in_tensor.lod());
          TensorCopy(in_tensor, context.GetPlace(), d_out_tensor);

        } else {
          d_out_tensor->Resize(dim);

          if (!d_out_tensor->IsInitialized()) {
            d_out_tensor->mutable_data<T>(context.GetPlace());
          }

          math::SetConstant<DeviceContext, T> set_zero;
          set_zero(dev_ctx, d_out_tensor, static_cast<T>(0));
        }
      }

625
    } else {
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
      auto* d_input =
          context.Input<framework::Tensor>(framework::GradVarName("Out"));
      auto* d_out =
          context.Output<framework::Tensor>(framework::GradVarName("Input"));

      d_out->mutable_data<T>(context.GetPlace());

      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(dev_ctx, d_out, static_cast<T>(0));

      auto in_dims = d_input->dims();

      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*d_input);
      auto out_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*d_out, out_dims);
      if (need_reverse) {
        framework::Tensor reverse_input;
        reverse_input.mutable_data<T>(in_dims, context.GetPlace());
        auto reverse_in_t =
            framework::EigenTensor<T, D, Eigen::RowMajor,
                                   Eigen::DenseIndex>::From(reverse_input);

        reverse_in_t.device(place) = in_t.reverse(reverse_axis);
        out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
            .device(place) = reverse_in_t;
      } else {
        out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
            .device(place) = in_t;
      }
657
    }
W
wangchaochaohu 已提交
658 659 660 661
  }
};
}  // namespace operators
}  // namespace paddle