strided_slice_op.h 15.8 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26 27 28 29
static void StridedSliceOutDims(
    const std::vector<int>& starts, const std::vector<int>& ends,
    const std::vector<int>& strides, const std::vector<int>& axes,
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30 31
    const std::vector<int>& decrease_axis, int* out_dims_vector,
    const size_t size, bool infer_shape) {
32 33 34 35 36 37
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
  int stride_index, start_index, end_index;
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57 58 59
    PADDLE_ENFORCE_NE(stride_index, 0,
                      platform::errors::InvalidArgument(
                          "stride index in StridedSlice operator is 0."));
60 61 62 63 64 65 66 67 68
    int axis_size = in_dims[axes_index];
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
69 70 71
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
72 73 74 75 76 77 78 79 80 81 82
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool zero_dim_condition =
        ((stride_index < 0 && (start_index <= end_index)) ||
         (stride_index > 0 && (start_index >= end_index)));
    PADDLE_ENFORCE_EQ(zero_dim_condition, false,
83 84 85
                      platform::errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));
86 87 88 89 90 91 92 93 94
    int left = std::max(0, std::min(start_index, end_index));
    int right = std::min(axis_size, std::max(start_index, end_index));
    int step = std::abs(stride_index);
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

W
wangchaochaohu 已提交
95 96
static void StridedSliceFunctor(int* starts, int* ends, int* strides, int* axes,
                                int* reverse_axis, const framework::DDim dims,
97 98
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
99 100 101 102 103 104 105 106 107
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
    int axis_size = dims[axes[axis]];
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
108 109 110 111 112 113 114 115 116
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
117 118 119 120 121
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }
    if (ends[axis_index] < 0) {
122 123 124 125
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
      }
W
wangchaochaohu 已提交
126
    }
127 128 129 130 131 132 133
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
W
wangchaochaohu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
        starts[axis_index] = starts[axis_index] + 1;
        ends[axis_index] = ends[axis_index] + 1;
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto in_dims = in->dims();

    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");
190
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
191
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
192 193 194 195 196 197

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = get_new_data_from_tensorlist(list_new_strides_tensor);
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
      strides = get_new_data_from_tensor(strides_tensor);
    }

    std::vector<int> out_dims_vector(in_dims.size(), -1);
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
228 229
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
230 231
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
232 233
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
234 235
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
236 237 238 239 240

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
241
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
242 243 244 245 246 247 248 249 250
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

251 252 253 254
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
255 256 257 258 259
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
260 261 262 263 264 265 266 267 268 269 270 271 272 273
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

274 275 276 277 278 279 280 281
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

282
    out->Resize(out_dims);
W
wangchaochaohu 已提交
283 284 285 286 287 288 289
    out->mutable_data<T>(context.GetPlace());
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out, out_dims);
290 291 292 293 294 295 296 297 298 299 300 301
    if (need_reverse) {
      framework::Tensor tmp;
      tmp.mutable_data<T>(out_dims, context.GetPlace());
      auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                          Eigen::DenseIndex>::From(tmp);
      tmp_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      out_t.device(place) = tmp_t.reverse(reverse_axis);
    } else {
      out_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    }
302 303 304 305

    if (decrease_axis.size() > 0) {
      out->Resize(out_dims_origin);
    }
W
wangchaochaohu 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_input =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_out =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_out->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, d_out, static_cast<T>(0));
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");
357 358
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = get_new_data_from_tensorlist(list_new_strides_tensor);
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
      strides = get_new_data_from_tensor(strides_tensor);
    }

W
wangchaochaohu 已提交
388 389 390 391 392 393 394 395
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
396 397
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

412 413 414 415 416 417 418
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }
W
wangchaochaohu 已提交
419 420 421 422 423 424
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out, out_dims);
425 426 427 428 429 430 431 432 433 434 435 436 437 438
    if (need_reverse) {
      framework::Tensor reverse_input;
      reverse_input.mutable_data<T>(in_dims, context.GetPlace());
      auto reverse_in_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(reverse_input);

      reverse_in_t.device(place) = in_t.reverse(reverse_axis);
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = reverse_in_t;
    } else {
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = in_t;
    }
W
wangchaochaohu 已提交
439 440 441 442
  }
};
}  // namespace operators
}  // namespace paddle