strided_slice_op.h 15.5 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26 27 28 29
static void StridedSliceOutDims(
    const std::vector<int>& starts, const std::vector<int>& ends,
    const std::vector<int>& strides, const std::vector<int>& axes,
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30 31
    const std::vector<int>& decrease_axis, int* out_dims_vector,
    const size_t size, bool infer_shape) {
32 33 34 35 36 37
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
  int stride_index, start_index, end_index;
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57
    PADDLE_ENFORCE_NE(stride_index, 0, "stride must not to be zero");
58 59 60 61 62 63 64 65 66
    int axis_size = in_dims[axes_index];
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
67 68 69
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool zero_dim_condition =
        ((stride_index < 0 && (start_index <= end_index)) ||
         (stride_index > 0 && (start_index >= end_index)));
    PADDLE_ENFORCE_EQ(zero_dim_condition, false,
                      "starts and end must meet requirement in different "
                      "stride conditiont");
    int left = std::max(0, std::min(start_index, end_index));
    int right = std::min(axis_size, std::max(start_index, end_index));
    int step = std::abs(stride_index);
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

W
wangchaochaohu 已提交
92 93
static void StridedSliceFunctor(int* starts, int* ends, int* strides, int* axes,
                                int* reverse_axis, const framework::DDim dims,
94 95
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
96 97 98 99 100 101 102 103 104
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
    int axis_size = dims[axes[axis]];
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
105 106 107 108 109 110 111 112 113
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
114 115 116 117 118
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }
    if (ends[axis_index] < 0) {
119 120 121 122
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
      }
W
wangchaochaohu 已提交
123
    }
124 125 126 127 128 129 130
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
W
wangchaochaohu 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
        starts[axis_index] = starts[axis_index] + 1;
        ends[axis_index] = ends[axis_index] + 1;
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto in_dims = in->dims();

    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");
187
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
188
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
189 190 191 192 193 194

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = get_new_data_from_tensorlist(list_new_strides_tensor);
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
      strides = get_new_data_from_tensor(strides_tensor);
    }

    std::vector<int> out_dims_vector(in_dims.size(), -1);
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
225 226
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
227 228
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
229 230
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
231 232
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
233 234 235 236 237

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
238
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
239 240 241 242 243 244 245 246 247
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                          "decrease dim should be 1");
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

268 269 270 271 272 273 274 275
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

276
    out->Resize(out_dims);
W
wangchaochaohu 已提交
277 278 279 280 281 282 283
    out->mutable_data<T>(context.GetPlace());
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out, out_dims);
284 285 286 287 288 289 290 291 292 293 294 295
    if (need_reverse) {
      framework::Tensor tmp;
      tmp.mutable_data<T>(out_dims, context.GetPlace());
      auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                          Eigen::DenseIndex>::From(tmp);
      tmp_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      out_t.device(place) = tmp_t.reverse(reverse_axis);
    } else {
      out_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    }
296 297 298 299

    if (decrease_axis.size() > 0) {
      out->Resize(out_dims_origin);
    }
W
wangchaochaohu 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_input =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_out =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_out->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, d_out, static_cast<T>(0));
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");
351 352
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = get_new_data_from_tensorlist(list_new_strides_tensor);
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
      strides = get_new_data_from_tensor(strides_tensor);
    }

W
wangchaochaohu 已提交
382 383 384 385 386 387 388 389
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
390 391
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

406 407 408 409 410 411 412
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }
W
wangchaochaohu 已提交
413 414 415 416 417 418
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out, out_dims);
419 420 421 422 423 424 425 426 427 428 429 430 431 432
    if (need_reverse) {
      framework::Tensor reverse_input;
      reverse_input.mutable_data<T>(in_dims, context.GetPlace());
      auto reverse_in_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(reverse_input);

      reverse_in_t.device(place) = in_t.reverse(reverse_axis);
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = reverse_in_t;
    } else {
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = in_t;
    }
W
wangchaochaohu 已提交
433 434 435 436
  }
};
}  // namespace operators
}  // namespace paddle