strided_slice_op.h 24.1 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26
static void StridedSliceOutDims(
27 28
    const std::vector<int64_t>& starts, const std::vector<int64_t>& ends,
    const std::vector<int64_t>& strides, const std::vector<int>& axes,
29
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30
    const std::vector<int>& decrease_axis, int64_t* out_dims_vector,
31
    const size_t size, bool infer_shape) {
32 33 34
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
35
  int64_t stride_index, start_index, end_index;
36 37
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57 58 59
    PADDLE_ENFORCE_NE(stride_index, 0,
                      platform::errors::InvalidArgument(
                          "stride index in StridedSlice operator is 0."));
60 61
    int64_t axis_size = in_dims[axes_index];

62 63 64 65 66 67 68 69
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
70 71 72
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
73 74 75 76 77 78 79 80 81 82 83
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool zero_dim_condition =
        ((stride_index < 0 && (start_index <= end_index)) ||
         (stride_index > 0 && (start_index >= end_index)));
    PADDLE_ENFORCE_EQ(zero_dim_condition, false,
84 85 86
                      platform::errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));
87 88 89 90 91 92

    int64_t left =
        std::max(static_cast<int64_t>(0), std::min(start_index, end_index));
    int64_t right = std::min(axis_size, std::max(start_index, end_index));
    int64_t step = std::abs(stride_index);

93 94 95 96 97 98
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

99 100 101
static void StridedSliceFunctor(int64_t* starts, int64_t* ends,
                                int64_t* strides, int* axes, int* reverse_axis,
                                const framework::DDim dims,
102 103
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
104 105
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
106
    int64_t axis_size = dims[axes[axis]];
W
wangchaochaohu 已提交
107 108 109 110 111 112
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
113 114 115 116 117 118 119 120 121
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
122 123 124 125 126
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }
    if (ends[axis_index] < 0) {
127 128 129
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
130 131 132
        if (ends[axis_index] < 0) {
          ends[axis_index] = 0;
        }
133
      }
W
wangchaochaohu 已提交
134
    }
135 136 137 138 139 140 141
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
142 143 144 145 146 147

    if ((starts[axis_index] < 0) && (axis_size > 0)) {
      starts[axis_index] += axis_size;
      starts[axis_index] = std::max<int64_t>(starts[axis_index], 0);
    }

W
wangchaochaohu 已提交
148 149 150 151 152
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
153 154
        auto end_dim = axis_size - 1 < starts[axis_index] ? axis_size - 1
                                                          : starts[axis_index];
155 156 157 158 159
        auto offset = (end_dim - ends[axis_index]) % strides[axis_index];
        offset = offset == 0 ? strides[axis_index] : offset;

        starts[axis_index] = starts[axis_index] + offset;
        ends[axis_index] = ends[axis_index] + offset;
W
wangchaochaohu 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
173 174 175 176 177
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();
W
wangchaochaohu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
205 206 207 208 209 210 211 212 213 214 215

    framework::DDim in_dims;
    auto* input_var = context.InputVar("Input");

    bool is_input_var_array = input_var->IsType<LoDTensorArray>();
    if (is_input_var_array) {
      const int64_t size = input_var->Get<framework::LoDTensorArray>().size();
      in_dims = framework::make_ddim({size});
    } else {
      in_dims = context.Input<framework::Tensor>("Input")->dims();
    }
W
wangchaochaohu 已提交
216

217 218 219 220 221 222 223 224
    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
225
    auto axes = context.Attr<std::vector<int>>("axes");
226
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
227
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
228 229 230 231 232 233

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

234 235 236 237 238 239 240 241
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
242
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
243 244
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
245
      starts = GetDataFromTensor<int64_t>(starts_tensor);
246 247 248
    }

    if (list_new_ends_tensor.size() > 0) {
249
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
250 251
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
252
      ends = GetDataFromTensor<int64_t>(ends_tensor);
253 254 255
    }

    if (list_new_strides_tensor.size() > 0) {
256
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
257 258
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
259
      strides = GetDataFromTensor<int64_t>(strides_tensor);
260 261
    }

262
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
263
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
264 265
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
266 267
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
268 269
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
270 271
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
272 273 274 275 276

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
277
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
278 279 280 281 282 283 284 285 286
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

287 288
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
289
      std::vector<int64_t> new_out_shape;
290
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
291 292 293 294 295
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
296 297 298 299 300 301 302 303 304 305 306 307 308 309
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

310 311 312 313 314 315 316 317
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    if (is_input_var_array) {
      PADDLE_ENFORCE_EQ(
          starts_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of start index  should be 1, but received %d.",
              starts_indices.size()));

      PADDLE_ENFORCE_EQ(
          ends_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of end index should be 1, but received %d.",
              ends_indices.size()));

      PADDLE_ENFORCE_EQ(
          strides_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of stride should be 1, but received %d.",
              strides_indices.size()));

      auto* output_var = context.OutputVar("Out");

      PADDLE_ENFORCE_EQ(
          output_var->IsType<LoDTensorArray>(), true,
          platform::errors::InvalidArgument(
              "When the input of `strided_slice_op` is `TensorArray`. The "
              "output is excepted `TensorArray` , but received %s.",
              framework::ToTypeName(output_var->Type())));

      PADDLE_ENFORCE_EQ(
          out_dims_origin.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of Output should be 1, but received %d",
              out_dims_origin.size()));

      auto& in_array = input_var->Get<framework::LoDTensorArray>();

      auto* out_array = context.Output<framework::LoDTensorArray>("Out");

      out_array->resize(out_dims_origin[0]);
      size_t const in_array_size = in_array.size();
      for (size_t i = 0; i < out_array->size(); i++) {
        size_t in_offset =
            (starts_indices[0] % in_array_size) + i * strides_indices[0];

        int64_t out_offset = i;
        if (need_reverse) {
          out_offset = out_array->size() - i - 1;
        }

        auto& in_tensor = in_array.at(in_offset);
        PADDLE_ENFORCE_GT(
            in_tensor.memory_size(), 0,
            platform::errors::PreconditionNotMet(
                "The input LoDTensorArray Input[%d] holds no memory.",
                in_offset));
        auto* out_tensor = &out_array->at(out_offset);

        out_tensor->set_lod(in_tensor.lod());
        TensorCopy(in_tensor, context.GetPlace(), out_tensor);
      }

383
    } else {
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      auto in = context.Input<framework::Tensor>("Input");
      auto out = context.Output<framework::Tensor>("Out");
      out->Resize(out_dims);
      out->mutable_data<T>(context.GetPlace());
      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*in);
      auto out_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*out, out_dims);
      if (need_reverse) {
        framework::Tensor tmp;
        tmp.mutable_data<T>(out_dims, context.GetPlace());
        auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                            Eigen::DenseIndex>::From(tmp);
        tmp_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
        out_t.device(place) = tmp_t.reverse(reverse_axis);
      } else {
        out_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      }
405

406 407 408
      if (decrease_axis.size() > 0) {
        out->Resize(out_dims_origin);
      }
409
    }
W
wangchaochaohu 已提交
410 411 412 413 414 415 416
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
417 418 419 420 421
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();
W
wangchaochaohu 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();

    auto& dev_ctx = context.template device_context<DeviceContext>();
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

    framework::DDim out_dims;
    auto* out_var = context.OutputVar(framework::GradVarName("Input"));
    bool is_out_var_array = out_var->IsType<LoDTensorArray>();
    if (is_out_var_array) {
      // Note(weixin):Since the shape of `framework::GradVarName("Input")` of
      // StridedSliceGrad cannot be calculated by
      // `framework::GradVarName("Output")`, the dim of "Input" is used to
      // calculate the output shape. when set it to inplace OP, there may be
      // some problems.
      const int64_t size =
          context.Input<framework::LoDTensorArray>("Input")->size();

      out_dims = framework::make_ddim({size});
    } else {
      out_dims =
          context.Output<framework::Tensor>(framework::GradVarName("Input"))
              ->dims();
    }
471 472 473 474 475 476 477 478 479

    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
480
    auto axes = context.Attr<std::vector<int>>("axes");
481 482
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
483

484 485 486 487 488 489 490 491
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
492
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
493 494
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
495
      starts = GetDataFromTensor<int64_t>(starts_tensor);
496 497 498
    }

    if (list_new_ends_tensor.size() > 0) {
499
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
500 501
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
502
      ends = GetDataFromTensor<int64_t>(ends_tensor);
503 504 505
    }

    if (list_new_strides_tensor.size() > 0) {
506
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
507 508
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
509
      strides = GetDataFromTensor<int64_t>(strides_tensor);
510 511
    }

W
wangchaochaohu 已提交
512 513 514 515 516 517 518 519
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
520 521
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

536 537 538 539 540 541 542 543
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    if (is_out_var_array) {
      PADDLE_ENFORCE_EQ(
          starts_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
              "dimension of start index  should be 1, but received %d.",
              starts_indices.size()));
      PADDLE_ENFORCE_EQ(
          ends_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of end index should be 1, but received %d.",
              ends_indices.size()));
      PADDLE_ENFORCE_EQ(
          strides_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
              "dimension of stride should be 1, but received %d.",
              strides_indices.size()));

      auto* d_input_var = context.InputVar(framework::GradVarName("Out"));

      PADDLE_ENFORCE_EQ(
          d_input_var->IsType<LoDTensorArray>(), true,
          platform::errors::InvalidArgument(
              "When the output of `strided_slice_grad_op` is "
              "`TensorArray`, the input is excepted `TensorArray` , "
              "but received %s.",
              framework::ToTypeName(d_input_var->Type())));

      PADDLE_ENFORCE_EQ(
          out_dims.size(), 1,
          platform::errors::InvalidArgument(
              "When the output of `strided_slice_grad_op` is `TensorArray`, "
              "the dimension of output should be 1, but received %d.",
              out_dims.size()));
      auto& d_in_array = d_input_var->Get<framework::LoDTensorArray>();

      auto* d_out_array = context.Output<framework::LoDTensorArray>(
          framework::GradVarName("Input"));

      d_out_array->resize(out_dims[0]);
      auto const d_out_array_size = d_out_array->size();
      auto* input_tensor_array =
          context.Input<framework::LoDTensorArray>("Input");

      for (size_t j = 0; j < d_out_array_size; j++) {
        auto& dim = input_tensor_array->at(j).dims();
        auto* d_out_tensor = &d_out_array->at(j);

        int64_t sub = j - starts_indices[0];

        int64_t in_offset = sub / strides_indices[0];

        if (need_reverse) {
          in_offset = d_in_array.size() - in_offset - 1;
        }

        if ((sub % strides_indices[0] == 0) && (0 <= in_offset) &&
            (static_cast<size_t>(in_offset) < d_in_array.size())) {
          auto& in_tensor = d_in_array.at(in_offset);
          PADDLE_ENFORCE_GT(
              in_tensor.memory_size(), 0,
              platform::errors::PreconditionNotMet(
                  "The input LoDTensorArray Input[%d] holds no memory.",
                  in_offset));

          d_out_tensor->set_lod(in_tensor.lod());
          TensorCopy(in_tensor, context.GetPlace(), d_out_tensor);

        } else {
          d_out_tensor->Resize(dim);

          if (!d_out_tensor->IsInitialized()) {
            d_out_tensor->mutable_data<T>(context.GetPlace());
          }

          math::SetConstant<DeviceContext, T> set_zero;
          set_zero(dev_ctx, d_out_tensor, static_cast<T>(0));
        }
      }

626
    } else {
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
      auto* d_input =
          context.Input<framework::Tensor>(framework::GradVarName("Out"));
      auto* d_out =
          context.Output<framework::Tensor>(framework::GradVarName("Input"));

      d_out->mutable_data<T>(context.GetPlace());

      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(dev_ctx, d_out, static_cast<T>(0));

      auto in_dims = d_input->dims();

      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*d_input);
      auto out_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*d_out, out_dims);
      if (need_reverse) {
        framework::Tensor reverse_input;
        reverse_input.mutable_data<T>(in_dims, context.GetPlace());
        auto reverse_in_t =
            framework::EigenTensor<T, D, Eigen::RowMajor,
                                   Eigen::DenseIndex>::From(reverse_input);

        reverse_in_t.device(place) = in_t.reverse(reverse_axis);
        out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
            .device(place) = reverse_in_t;
      } else {
        out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
            .device(place) = in_t;
      }
658
    }
W
wangchaochaohu 已提交
659 660 661 662
  }
};
}  // namespace operators
}  // namespace paddle