strided_slice_op.h 16.4 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26
static void StridedSliceOutDims(
27 28
    const std::vector<int64_t>& starts, const std::vector<int64_t>& ends,
    const std::vector<int64_t>& strides, const std::vector<int>& axes,
29
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30
    const std::vector<int>& decrease_axis, int64_t* out_dims_vector,
31
    const size_t size, bool infer_shape) {
32 33 34
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
35
  int64_t stride_index, start_index, end_index;
36 37
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57 58 59
    PADDLE_ENFORCE_NE(stride_index, 0,
                      platform::errors::InvalidArgument(
                          "stride index in StridedSlice operator is 0."));
60 61
    int64_t axis_size = in_dims[axes_index];

62 63 64 65 66 67 68 69
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
70 71 72
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
73 74 75 76 77 78 79 80 81 82 83
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool zero_dim_condition =
        ((stride_index < 0 && (start_index <= end_index)) ||
         (stride_index > 0 && (start_index >= end_index)));
    PADDLE_ENFORCE_EQ(zero_dim_condition, false,
84 85 86
                      platform::errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));
87 88 89 90 91 92

    int64_t left =
        std::max(static_cast<int64_t>(0), std::min(start_index, end_index));
    int64_t right = std::min(axis_size, std::max(start_index, end_index));
    int64_t step = std::abs(stride_index);

93 94 95 96 97 98
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

99 100 101
static void StridedSliceFunctor(int64_t* starts, int64_t* ends,
                                int64_t* strides, int* axes, int* reverse_axis,
                                const framework::DDim dims,
102 103
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
104 105
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
106
    int64_t axis_size = dims[axes[axis]];
W
wangchaochaohu 已提交
107 108 109 110 111 112
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
113 114 115 116 117 118 119 120 121
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
122 123 124 125 126
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }
    if (ends[axis_index] < 0) {
127 128 129 130
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
      }
W
wangchaochaohu 已提交
131
    }
132 133 134 135 136 137 138
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
W
wangchaochaohu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
        starts[axis_index] = starts[axis_index] + 1;
        ends[axis_index] = ends[axis_index] + 1;
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto in_dims = in->dims();

191 192 193 194 195 196 197 198
    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
199
    auto axes = context.Attr<std::vector<int>>("axes");
200
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
201
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
202 203 204 205 206 207

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

208 209 210 211 212 213 214 215
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
216
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
217 218
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
219
      starts = GetDataFromTensor<int64_t>(starts_tensor);
220 221 222
    }

    if (list_new_ends_tensor.size() > 0) {
223
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
224 225
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
226
      ends = GetDataFromTensor<int64_t>(ends_tensor);
227 228 229
    }

    if (list_new_strides_tensor.size() > 0) {
230
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
231 232
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
233
      strides = GetDataFromTensor<int64_t>(strides_tensor);
234 235
    }

236
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
237
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
238 239
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
240 241
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
242 243
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
244 245
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
246 247 248 249 250

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
251
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
252 253 254 255 256 257 258 259 260
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

261 262
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
263
      std::vector<int64_t> new_out_shape;
264
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
265 266 267 268 269
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
270 271 272 273 274 275 276 277 278 279 280 281 282 283
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

284 285 286 287 288 289 290 291
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

292
    out->Resize(out_dims);
W
wangchaochaohu 已提交
293 294 295 296 297 298 299
    out->mutable_data<T>(context.GetPlace());
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out, out_dims);
300 301 302 303 304 305 306 307 308 309 310 311
    if (need_reverse) {
      framework::Tensor tmp;
      tmp.mutable_data<T>(out_dims, context.GetPlace());
      auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                          Eigen::DenseIndex>::From(tmp);
      tmp_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      out_t.device(place) = tmp_t.reverse(reverse_axis);
    } else {
      out_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    }
312 313 314 315

    if (decrease_axis.size() > 0) {
      out->Resize(out_dims_origin);
    }
W
wangchaochaohu 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_input =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_out =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_out->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, d_out, static_cast<T>(0));
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
363 364 365 366 367 368 369 370 371

    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
372
    auto axes = context.Attr<std::vector<int>>("axes");
373 374
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
375

376 377 378 379 380 381 382 383
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
384
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
385 386
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
387
      starts = GetDataFromTensor<int64_t>(starts_tensor);
388 389 390
    }

    if (list_new_ends_tensor.size() > 0) {
391
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
392 393
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
394
      ends = GetDataFromTensor<int64_t>(ends_tensor);
395 396 397
    }

    if (list_new_strides_tensor.size() > 0) {
398
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
399 400
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
401
      strides = GetDataFromTensor<int64_t>(strides_tensor);
402 403
    }

W
wangchaochaohu 已提交
404 405 406 407 408 409 410 411
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
412 413
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

428 429 430 431 432 433 434
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }
W
wangchaochaohu 已提交
435 436 437 438 439 440
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out, out_dims);
441 442 443 444 445 446 447 448 449 450 451 452 453 454
    if (need_reverse) {
      framework::Tensor reverse_input;
      reverse_input.mutable_data<T>(in_dims, context.GetPlace());
      auto reverse_in_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(reverse_input);

      reverse_in_t.device(place) = in_t.reverse(reverse_axis);
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = reverse_in_t;
    } else {
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = in_t;
    }
W
wangchaochaohu 已提交
455 456 457 458
  }
};
}  // namespace operators
}  // namespace paddle