fusion.cc 31.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/infermeta/fusion.h"
#include <vector>
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
21
#include "paddle/phi/kernels/cpu/conv_util.h"
W
wz1qqx 已提交
22
#include "paddle/phi/kernels/funcs/common_shape.h"
23 24
#include "paddle/phi/kernels/funcs/concat_funcs.h"
#include "paddle/phi/kernels/funcs/strided_slice.h"
25 26 27

namespace phi {

28 29 30 31 32
static phi::DDim BroadCastInferShape(const DDim x_dims,
                                     const DDim y_dims,
                                     int axis) {
  std::vector<int> out_dims_array(x_dims.size(), -1);
  if (x_dims != y_dims) {
W
wz1qqx 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    int max_dim = std::max(x_dims.size(), y_dims.size());
    if (x_dims.size() == y_dims.size()) {
      PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0),
                        true,
                        phi::errors::InvalidArgument(
                            "axis should be -1 or 0 while the dimension of "
                            "tensor X (%s) is equal to the dimension of "
                            "tensor Y (%s), but received axis: %s",
                            x_dims.size(),
                            y_dims.size(),
                            axis));
    }
    PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim),
                      true,
                      phi::errors::InvalidArgument(
                          "The axis range must be [%s, %s), but axis is %s. "
                          "Please set the axis again.",
                          -1 * max_dim,
                          max_dim,
                          axis));
    axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                     : axis);
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
57
    out_dims_array.resize(max_dim);
W
wz1qqx 已提交
58 59 60 61 62 63 64
    funcs::GetBroadcastDimsArrays(x_dims,
                                  y_dims,
                                  x_dims_array.data(),
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    return phi::make_ddim(out_dims_array);
  }
  return x_dims;
}

void AddActXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
                        const MetaTensor& y,
                        const MetaTensor& y_max,
                        int act_type,
                        MetaTensor* out,
                        MetaTensor* out_max) {
  int axis = -1;
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims != y_dims) {
    auto out_dims = BroadCastInferShape(x_dims, y_dims, axis);
W
wz1qqx 已提交
83 84
    out->set_dims(out_dims);
  } else {
85
    out->set_dims(x_dims);
W
wz1qqx 已提交
86 87 88 89 90 91 92 93 94
  }
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
  out_max->set_dims(phi::make_ddim({6}));
  out_max->set_dtype(x.dtype());
  out_max->set_layout(x.layout());
}

W
wz1qqx 已提交
95 96 97 98
void AddLayernormXPUInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              const MetaTensor& scale,
                              const MetaTensor& bias,
W
wz1qqx 已提交
99
                              int begin_norm_axis,
W
wz1qqx 已提交
100 101 102 103 104 105 106 107
                              float epsilon,
                              MetaTensor* out,
                              MetaTensor* mean,
                              MetaTensor* variance,
                              MetaTensor* z_add) {
  int axis = -1;
  auto x_dims = x.dims();
  auto y_dims = y.dims();
W
wz1qqx 已提交
108
  auto out_dims = x_dims;
W
wz1qqx 已提交
109
  if (x_dims != y_dims) {
W
wz1qqx 已提交
110
    out_dims = BroadCastInferShape(x_dims, y_dims, axis);
W
wz1qqx 已提交
111 112
    out->set_dims(out_dims);
  } else {
W
wz1qqx 已提交
113
    out->set_dims(out_dims);
W
wz1qqx 已提交
114
  }
W
wz1qqx 已提交
115 116 117
  auto layer_norm_x_mat_dims = phi::flatten_to_2d(out_dims, begin_norm_axis);
  int64_t m = layer_norm_x_mat_dims[0];
  int64_t n = layer_norm_x_mat_dims[1];
W
wz1qqx 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
  mean->set_dims(phi::make_ddim({m}));
  mean->set_dtype(DataType::FLOAT32);
  mean->set_layout(x.layout());
  variance->set_dims(phi::make_ddim({m}));
  variance->set_dtype(DataType::FLOAT32);
  variance->set_layout(x.layout());
  z_add->set_dims(phi::make_ddim({m, n}));
  z_add->set_dtype(x.dtype());
  z_add->set_layout(x.layout());
}

132 133 134 135 136 137 138 139 140 141 142 143 144
inline int ConvOutSize(int input_size,
                       int filter_size,
                       int dilation,
                       int pad_left,
                       int pad_right,
                       int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size =
      (input_size + (pad_left + pad_right) - dkernel) / stride + 1;

  return output_size;
}

W
wz1qqx 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
void Conv1dXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
                        const MetaTensor& filter,
                        const MetaTensor& filter_max,
                        const MetaTensor& bias,
                        const MetaTensor& branch,
                        const MetaTensor& branch_max,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        int dilations,
                        int strides,
                        int groups,
                        int act_type,
                        float act_param,
                        MetaTensor* out,
                        MetaTensor* out_max) {
  auto in_dims = x.dims();
  auto filter_dims = filter.dims();
  // do some checks
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      3,
      phi::errors::InvalidArgument(
          "The input of Op(Conv_xpu) should be a 3-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
          in_dims.size(),
          in_dims));

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      filter_dims.size(),
      phi::errors::InvalidArgument(
          "The input's dimension and filter's dimension of "
          "Op(Conv_xpu) should be equal. But received: the input's shape is "
          "[%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));

  const auto input_channels = in_dims[1];

  PADDLE_ENFORCE_GT(
      dilations,
      0,
      phi::errors::InvalidArgument(
          "The dilation of Op(Conv) should be larget than 0, but received "
          "dilation is %d.",
          dilations));

  PADDLE_ENFORCE_EQ(
      input_channels,
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv_xpu). But received: the input's channels is "
          "%d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d. ",
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups));

  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
          filter_dims[0],
          filter_dims,
          groups));

  std::vector<int64_t> out_shape({in_dims[0], filter_dims[0]});
  out_shape.push_back(ConvOutSize(in_dims[2],
                                  filter_dims[2],
                                  dilations,
                                  paddings[0],
                                  paddings[1],
                                  strides));
  // set output and output max dims
  out->set_dims(DDim(out_shape.data(), out_shape.size()));
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out_max->set_dims(phi::make_ddim({6}));
}

238 239
void Conv2dXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
240 241 242 243
                        const MetaTensor& filter,
                        const MetaTensor& filter_max,
                        const MetaTensor& bias,
                        const MetaTensor& branch,
W
wz1qqx 已提交
244
                        const MetaTensor& branch_max,
245 246 247 248 249 250 251
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        const std::string& padding_algorithm,
                        int groups,
                        int act_type,
                        float act_param,
252
                        DataType out_dtype,
253 254 255
                        MetaTensor* out,
                        MetaTensor* out_max) {
  auto in_dims = x.dims();
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  auto filter_dims = filter.dims();
  // do some checks
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      4,
      phi::errors::InvalidArgument(
          "The input of Op(Conv_xpu) should be a 4-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
          in_dims.size(),
          in_dims));

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      filter_dims.size(),
      phi::errors::InvalidArgument(
          "The input's dimension and filter's dimension of "
          "Op(Conv_xpu) should be equal. But received: the input's shape is "
          "[%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));

  const auto input_channels = in_dims[1];
  int stride_size = strides.size();
  int in_sub_stride_size = in_dims.size() - stride_size;
  int dilation_size = dilations.size();
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      strides.size() + 2U,
      phi::errors::InvalidArgument(
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv_xpu). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
          in_sub_stride_size));

  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i],
        0,
        phi::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }

  PADDLE_ENFORCE_EQ(
      input_channels,
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv_xpu). But received: the input's channels is "
          "%d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d. ",
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups));

  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
          filter_dims[0],
          filter_dims,
          groups));

  // update paddings and dilations accoring to padding_algorithm
  std::vector<int> paddings_vec = paddings;
  std::vector<int> dilations_vec = dilations;
  DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
  DDim filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  phi::UpdatePaddingAndDilation(&paddings_vec,
                                &dilations_vec,
                                padding_algorithm,
                                in_data_dims,
                                strides,
                                ksize);

  std::vector<int64_t> out_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < strides.size(); ++i) {
    out_shape.push_back(ConvOutSize(in_dims[i + 2],
                                    filter_dims[i + 2],
                                    dilations[i],
                                    paddings_vec[i * 2],
                                    paddings_vec[i * 2 + 1],
                                    strides[i]));
  }
  // set output and output max dims
360
  out->set_dims(DDim(out_shape.data(), out_shape.size()));
Z
zhupengyang 已提交
361
  out_max->set_dims(phi::make_ddim({6}));
362
  out->set_dtype(out_dtype);
363 364
}

365 366 367
void EmbeddingWithEltwiseAddXPUInferMeta(
    const std::vector<const MetaTensor*>& ids,
    const std::vector<const MetaTensor*>& tables,
368 369 370 371
    const MetaTensor& mask,
    MetaTensor* out,
    MetaTensor* seq_lod,
    MetaTensor* max_seq_len) {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  PADDLE_ENFORCE_GT(ids.size(),
                    0UL,
                    phi::errors::InvalidArgument(
                        "The input ids in EmbeddingWithEltwiseAddXPUInferMeta "
                        "can't be empty."));
  PADDLE_ENFORCE_GT(tables.size(),
                    0UL,
                    phi::errors::InvalidArgument(
                        "The input tables in "
                        "EmbeddingWithEltwiseAddXPUInferMeta can't be empty."));

  auto id_dims = ids[0]->dims();
  auto table_dims = tables[0]->dims();
  out->set_dims(phi::make_ddim({id_dims[0], id_dims[1], table_dims[1]}));
  out->set_dtype(tables[0]->dtype());
  out->set_layout(ids[0]->layout());
}

390
void FcXPUInferMeta(const MetaTensor& x,
391
                    const MetaTensor& x_max,
392 393 394 395 396 397 398 399 400
                    const MetaTensor& w,
                    const MetaTensor& w_max,
                    const MetaTensor& bias,
                    int in_num_col_dims,
                    bool transpose_x,
                    float alpha,
                    float beta,
                    int act_type,
                    float act_alpha,
401
                    DataType out_dtype,
402 403
                    MetaTensor* out,
                    MetaTensor* out_max) {
404 405 406 407 408 409
  std::vector<int> out_shape(in_num_col_dims + 1);
  for (int i = 0; i < in_num_col_dims; i++) {
    out_shape[i] = x.dims()[i];
  }
  out_shape[in_num_col_dims] = w.dims()[0];
  out->set_dims(DDim(out_shape.data(), out_shape.size()));
410
  out->set_dtype(out_dtype);
411
  out->set_layout(x.layout());
Z
zhupengyang 已提交
412
  out_max->set_dims(phi::make_ddim({6}));
413 414
  out_max->set_dtype(x.dtype());
  out_max->set_layout(x.layout());
415 416
}

417 418 419 420 421 422 423 424
void GenerateSequenceXPUInferMeta(const MetaTensor& x,
                                  DataType dtype,
                                  MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(dtype);
  out->set_layout(x.layout());
}

425 426 427 428 429 430 431 432
void MultiEncoderXPUInferMeta(
    const MetaTensor& x,
    const std::vector<const MetaTensor*>& fc_weight,
    const std::vector<const MetaTensor*>& fc_weight_max,
    const std::vector<const MetaTensor*>& fc_bias,
    const std::vector<const MetaTensor*>& ln_scale,
    const std::vector<const MetaTensor*>& ln_bias,
    const MetaTensor& mask,
433 434
    const MetaTensor& seq_lod,
    const MetaTensor& max_seq_len,
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    int layer_num,
    bool norm_before,
    int hidden_dim,
    int head_num,
    int size_per_head,
    int ffn_hidden_dim_scale,
    int act_type,
    int relative_type,
    int slice_idx,
    MetaTensor* out,
    MetaTensor* x_fp16,
    MetaTensor* out_fp16) {
  auto x_dims = x.dims();
  x_fp16->set_dims(x_dims);
  x_fp16->set_dtype(DataType::FLOAT16);
  x_fp16->set_layout(x.layout());
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out_fp16->set_dtype(DataType::FLOAT16);
  out_fp16->set_layout(x.layout());
  if (slice_idx == -1) {
    out->set_dims(x_dims);
    out_fp16->set_dims(x_dims);
  } else {
    out->set_dims({x_dims[0], x_dims[2]});
    out_fp16->set_dims({x_dims[0], x_dims[2]});
  }
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
void FusedMultiTransformerXpuInferMeta(
    const MetaTensor& x,
    const std::vector<const MetaTensor*>& ln_scale,
    const std::vector<const MetaTensor*>& ln_bias,
    const std::vector<const MetaTensor*>& qkvw,
    const std::vector<const MetaTensor*>& qkvw_max,
    const std::vector<const MetaTensor*>& qkv_bias,
    const std::vector<const MetaTensor*>& out_linear_w,
    const std::vector<const MetaTensor*>& out_linear_wmax,
    const std::vector<const MetaTensor*>& out_linear_bias,
    const std::vector<const MetaTensor*>& ffn_ln_scale,
    const std::vector<const MetaTensor*>& ffn_ln_bias,
    const std::vector<const MetaTensor*>& ffn1_weight,
    const std::vector<const MetaTensor*>& ffn1_weight_max,
    const std::vector<const MetaTensor*>& ffn1_bias,
    const std::vector<const MetaTensor*>& ffn2_weight,
    const std::vector<const MetaTensor*>& ffn2_weight_max,
    const std::vector<const MetaTensor*>& ffn2_bias,
    const std::vector<const MetaTensor*>& cache_kv,
    const std::vector<const MetaTensor*>& pre_caches,
    const std::vector<const MetaTensor*>& rotary_pos_emb,
    const std::vector<const MetaTensor*>& time_step,
    const std::vector<const MetaTensor*>& seq_lengths,
    const std::vector<const MetaTensor*>& src_mask,
488
    const std::vector<const MetaTensor*>& gather_index,
489 490 491 492 493 494 495 496 497
    bool pre_layer_norm,
    int rotary_emb_dims,
    float epsilon,
    float dropout_rate,
    bool is_test,
    const std::string& dropout_implementation,
    const std::string& act_method,
    bool trans_qkvw,
    int ring_id,
498
    int gather_axis,
499 500 501 502
    MetaTensor* out,
    std::vector<MetaTensor*> cache_kv_out) {
  auto x_dim = x.dims();
  auto y_dim = qkvw[0]->dims();
503 504 505 506 507 508
  PADDLE_ENFORCE_EQ(x_dim.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The dimensions of x must be 3(batch_size, seq_len, "
                        "dim_embed), but received dimensions of Input is [%d]",
                        x_dim.size()));
509 510 511
  PADDLE_ENFORCE_EQ(
      y_dim.size(),
      4,
512 513 514 515
      phi::errors::InvalidArgument(
          "The dimensions of qkv_weight must be 4(3, num_head, dim_head, "
          "dim_embed), but received dimensions of qkv_weight is [%d]",
          y_dim.size()));
516 517 518 519
  PADDLE_ENFORCE_EQ(
      x_dim[2],
      trans_qkvw ? y_dim[3] : y_dim[0],
      phi::errors::InvalidArgument(
520 521 522
          "The dimension of x_dim[2] and y_dim[3](trans_qkvw is  true) or "
          "y_dim[0](trans_qkvw is false) must be equal, but received: the "
          "shape of input x = [%s], and the shape of input qkv_weight = [%s]",
523 524
          x_dim,
          y_dim));
525
  if (!cache_kv.empty()) {
526 527 528 529 530 531 532 533 534 535 536
    const auto& c_dim = cache_kv[0]->dims();
    PADDLE_ENFORCE_EQ(
        c_dim.size(),
        5,
        phi::errors::InvalidArgument("The CacheKV must be 5 dims, but got %d",
                                     c_dim.size()));
    PADDLE_ENFORCE_EQ(c_dim[0],
                      2,
                      phi::errors::InvalidArgument(
                          "The first dim of CacheKV must be 2, but got %d",
                          c_dim[0]));  // 2
537 538 539 540 541 542 543 544 545 546 547 548 549 550
    PADDLE_ENFORCE_EQ(
        c_dim[3],
        trans_qkvw ? y_dim[1] : y_dim[2],
        phi::errors::InvalidArgument("The fourth dim of CacheKV must be equal "
                                     "with num head %d, but got %d",
                                     trans_qkvw ? y_dim[1] : y_dim[2],
                                     c_dim[3]));  // num_head
    PADDLE_ENFORCE_EQ(
        c_dim[4],
        trans_qkvw ? y_dim[2] : y_dim[3],
        phi::errors::InvalidArgument("The fifth dim of CacheKV must be equal "
                                     "with head size %d, but got %d",
                                     trans_qkvw ? y_dim[2] : y_dim[3],
                                     c_dim[4]));  // head_size
551 552 553 554 555 556 557
  }

  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
void YoloBoxXPUInferMeta(const MetaTensor& x,
                         const MetaTensor& x_max,
                         const MetaTensor& grid,
                         const MetaTensor& stride,
                         const MetaTensor& anchor_grid,
                         float offset,
                         MetaTensor* out,
                         MetaTensor* out_max) {
  auto x_dims = x.dims();
  auto x_dims_size = x_dims.size();
  PADDLE_ENFORCE_GT(
      x_dims[x_dims_size - 1],
      4,
      phi::errors::InvalidArgument(
          "The last dim of x should be larget than 4, but received "
          " is %d.",
          x_dims[x_dims_size - 1]));
  // compute left out_dims
  // y[..., 0:2] = (x[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy
  std::vector<int> axes_ = {x_dims_size - 1};
  std::vector<int> infer_flags_ = {1};
  std::vector<int> decrease_axis_ = {-1};
  std::vector<int64_t> strides_ = {1};
  std::vector<int64_t> starts_l = {0};
  std::vector<int64_t> ends_l = {2};
  std::vector<int64_t> left_slice_out_dims_vector(x_dims_size, -1);
  phi::funcs::StridedSliceOutDims(starts_l,
                                  ends_l,
                                  strides_,
                                  axes_,
                                  infer_flags_,
                                  x_dims,
                                  decrease_axis_,
                                  left_slice_out_dims_vector.data(),
                                  1,
                                  true);
  auto left_slice_out_dims = phi::make_ddim(left_slice_out_dims_vector);
  auto grid_dims = grid.dims();
  auto left_add_out_dims =
      BroadCastInferShape(left_slice_out_dims, grid_dims, -1);
  auto stride_dims = stride.dims();
  auto left_mul_out_dims =
      BroadCastInferShape(left_add_out_dims, stride_dims, -1);
  // compute mid out_dims
  // wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]             # wh
  std::vector<int64_t> starts_m = {2};
  std::vector<int64_t> ends_m = {4};
  std::vector<int64_t> mid_slice_out_dims_vector(x_dims_size, -1);
  phi::funcs::StridedSliceOutDims(starts_m,
                                  ends_m,
                                  strides_,
                                  axes_,
                                  infer_flags_,
                                  x_dims,
                                  decrease_axis_,
                                  mid_slice_out_dims_vector.data(),
                                  1,
                                  true);
  auto mid_slice_out_dims = phi::make_ddim(mid_slice_out_dims_vector);
  auto anchor_grid_dims = anchor_grid.dims();
  auto mid_mul_out_dims =
      BroadCastInferShape(mid_slice_out_dims, anchor_grid_dims, -1);
  // compute right out_dims
  std::vector<int64_t> starts_r = {4};
  std::vector<int64_t> ends_r = {2147483647};
  std::vector<int64_t> right_slice_out_dims_vector(x_dims_size, -1);
  phi::funcs::StridedSliceOutDims(starts_r,
                                  ends_r,
                                  strides_,
                                  axes_,
                                  infer_flags_,
                                  x_dims,
                                  decrease_axis_,
                                  right_slice_out_dims_vector.data(),
                                  1,
                                  true);
  auto right_slice_out_dims = phi::make_ddim(right_slice_out_dims_vector);
  // compute concat out_dims
  std::vector<phi::DDim> in_dims;
  in_dims.reserve(3);
  in_dims.emplace_back(left_mul_out_dims);
  in_dims.emplace_back(mid_mul_out_dims);
  in_dims.emplace_back(right_slice_out_dims);
  phi::DDim out_dim =
      phi::funcs::ComputeAndCheckShape(false, in_dims, x_dims_size - 1);

  out->set_dims(out_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out_max->set_dims(phi::make_ddim({6}));
  out_max->set_dtype(x.dtype());
  out_max->set_layout(x.layout());
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
void ConvTransposeXPUInferMeta(const MetaTensor& x,
                               const MetaTensor& filter,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               const std::vector<int>& output_padding,
                               const std::vector<int>& output_size,
                               const std::string& padding_algorithm,
                               int groups,
                               const std::vector<int>& dilations,
                               const std::string& data_format,
                               MetaTensor* out,
                               MetaTensor* out_max) {
  auto x_dims = x.dims();
  auto filter_dims = filter.dims();
  std::vector<int> paddings_ = paddings;
  std::vector<int> dilations_ = dilations;
  PADDLE_ENFORCE_EQ(
      x_dims.size() == 4,
      true,
      errors::InvalidArgument("Input of Op(conv_transpose) should be 4-D "
                              "Tensor. But received: %u-D Tensor, "
                              "the shape of input is [%s]",
                              x_dims.size(),
                              x_dims));
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      filter_dims.size(),
      errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          x_dims,
          x_dims.size(),
          filter_dims,
          filter_dims.size()));

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0,
        errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = x_dims.size() - stride_size;

  PADDLE_ENFORCE_EQ(
      x_dims.size() - strides.size(),
      2U,
      errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size,
          x_dims.size(),
          x_dims,
          strides.size()));
714
  if (!output_size.empty())
715 716 717 718 719 720
    PADDLE_ENFORCE_EQ(
        output_size.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
721
  if (!output_padding.empty())
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    PADDLE_ENFORCE_EQ(
        output_padding.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));

  const int64_t C =
      (data_format != "NHWC" ? x_dims[1] : x_dims[x_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C,
      filter_dims[0],
      errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C,
          x_dims,
          filter_dims[0],
          filter_dims,
          data_format));

  DDim x_data_dims;
  if (data_format != "NHWC") {
    x_data_dims = slice_ddim(x_dims, 2, x_dims.size());
  } else {
    x_data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1);
  }
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings_, &dilations_, padding_algorithm, x_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({x_dims[0]});
  if (data_format != "NHWC") {
    output_shape.push_back(filter_dims[1] * groups);
  }
  const int offset = (data_format != "NHWC" ? 2 : 1);
  for (size_t i = 0; i < strides.size(); ++i) {
    auto filter_extent = dilations_[i] * (filter_dims[i + 2] - 1) + 1;
    auto infer_shape = (x_dims[i + offset] > 0)
                           ? (x_dims[i + offset] - 1) * strides[i] -
                                 paddings_[2 * i] - paddings_[2 * i + 1] +
                                 filter_extent
                           : -1;
769
    if (!output_size.empty()) {
770
      output_shape.push_back(output_size[i]);
771
    } else if (!output_padding.empty()) {
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
      output_shape.push_back((infer_shape + output_padding[i]));
    } else {
      output_shape.push_back(infer_shape);
    }
  }
  if (data_format == "NHWC") {
    output_shape.push_back(filter_dims[1] * groups);
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(x.dtype());
  out_max->set_dims(phi::make_ddim({6}));
}

void Conv2dTransposeXPUInferMeta(const MetaTensor& x,
                                 const MetaTensor& x_max,
                                 const MetaTensor& filter,
                                 const MetaTensor& filter_max,
                                 const MetaTensor& bias,
                                 const std::vector<int>& strides,
                                 const std::vector<int>& paddings,
                                 const std::vector<int>& output_padding,
                                 const IntArray& output_size,
                                 const std::string& padding_algorithm,
                                 int groups,
                                 const std::vector<int>& dilations,
                                 const std::string& data_format,
                                 bool has_bias,
                                 bool with_act,
                                 const std::string& act_type,
                                 MetaTensor* out,
                                 MetaTensor* out_max) {
  std::vector<int32_t> vec_output_size(output_size.GetData().begin(),
                                       output_size.GetData().end());
  ConvTransposeXPUInferMeta(x,
                            filter,
                            strides,
                            paddings,
                            output_padding,
                            vec_output_size,
                            padding_algorithm,
                            groups,
                            dilations,
                            data_format,
                            out,
                            out_max);
}

820 821 822 823 824 825 826 827
void FastWhereXPUInferMeta(const MetaTensor& condition,
                           const MetaTensor& x,
                           const MetaTensor& y,
                           MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
}

828
}  // namespace phi