Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0a59825e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a59825e
编写于
5月 08, 2023
作者:
W
wz1qqx
提交者:
GitHub
5月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] Optimize fp16 xpu models (#53523)
上级
186f5e0f
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
150 addition
and
63 deletion
+150
-63
paddle/fluid/framework/ir/xpu/conv2d_xpu_fuse_pass.cc
paddle/fluid/framework/ir/xpu/conv2d_xpu_fuse_pass.cc
+43
-8
paddle/phi/api/yaml/fused_ops.yaml
paddle/phi/api/yaml/fused_ops.yaml
+2
-2
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+12
-7
paddle/phi/infermeta/fusion.cc
paddle/phi/infermeta/fusion.cc
+1
-0
paddle/phi/infermeta/fusion.h
paddle/phi/infermeta/fusion.h
+1
-0
paddle/phi/kernels/activation_kernel.cc
paddle/phi/kernels/activation_kernel.cc
+2
-1
paddle/phi/kernels/batch_norm_kernel.cc
paddle/phi/kernels/batch_norm_kernel.cc
+6
-2
paddle/phi/kernels/fusion/xpu/conv2d_xpu_kernel.cc
paddle/phi/kernels/fusion/xpu/conv2d_xpu_kernel.cc
+5
-2
paddle/phi/kernels/xpu/activation_kernel.cc
paddle/phi/kernels/xpu/activation_kernel.cc
+37
-8
paddle/phi/kernels/xpu/batch_norm_kernel.cc
paddle/phi/kernels/xpu/batch_norm_kernel.cc
+38
-32
paddle/phi/kernels/xpu/reduce_mean_kernel.cc
paddle/phi/kernels/xpu/reduce_mean_kernel.cc
+3
-1
未找到文件。
paddle/fluid/framework/ir/xpu/conv2d_xpu_fuse_pass.cc
浏览文件 @
0a59825e
...
...
@@ -34,6 +34,25 @@ class Scope;
}
// namespace framework
}
// namespace paddle
namespace
{
template
<
typename
T1
,
typename
T2
>
void
ConvertTensorType
(
phi
::
DenseTensor
*
tensor
)
{
phi
::
DenseTensor
tmp_tensor
;
tmp_tensor
.
set_type
(
phi
::
CppTypeToDataType
<
T2
>::
Type
());
tmp_tensor
.
Resize
(
tensor
->
dims
());
auto
*
tmp_data
=
tmp_tensor
.
mutable_data
<
T2
>
(
paddle
::
platform
::
CPUPlace
());
auto
*
data
=
tensor
->
mutable_data
<
T1
>
(
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
tensor
->
numel
();
i
++
)
{
tmp_data
[
i
]
=
static_cast
<
T2
>
(
data
[
i
]);
}
tensor
->
clear
();
paddle
::
framework
::
TensorCopySync
(
tmp_tensor
,
paddle
::
platform
::
CPUPlace
(),
tensor
);
}
}
// namespace
namespace
paddle
{
namespace
framework
{
namespace
ir
{
...
...
@@ -157,15 +176,23 @@ Conv2dXPUPattern::Conv2dXPUPattern(PDPattern* pattern,
if
(
with_bn_
)
{
ew_bias_add_out
->
assert_is_op_input
(
"batch_norm"
,
"X"
);
bn_bias
=
pattern
->
NewNode
(
bn_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Bias"
)
->
assert_has_n_outputs
(
1
);
bn_mean
=
pattern
->
NewNode
(
bn_mean_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Mean"
)
->
assert_has_n_outputs
(
1
);
bn_scale
=
pattern
->
NewNode
(
bn_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Scale"
)
->
assert_has_n_outputs
(
1
);
bn_var
=
pattern
->
NewNode
(
bn_var_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Variance"
)
->
assert_has_n_outputs
(
1
);
bn
=
pattern
->
NewNode
(
bn_repr
())
->
assert_is_op
(
"batch_norm"
);
...
...
@@ -420,13 +447,17 @@ int Conv2dXPUFusePass::ApplyImpl(ir::Graph* graph,
// recompute bias and weight for conv2d_xpu op
auto
*
filter_t
=
scope
->
FindVar
(
conv_filter
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
// conv_filter fp16 --> fp32
auto
tensor_type
=
filter_t
->
dtype
();
if
(
tensor_type
==
phi
::
DataType
::
FLOAT16
)
{
ConvertTensorType
<
float16
,
float
>
(
filter_t
);
}
auto
filter_dims
=
filter_t
->
dims
();
bool
has_bias
=
with_bn
||
with_conv_bias
;
bool
has_branch
=
with_branch_x
||
with_branch_y
;
// Create conv_fusion_bias (conv bias) variable
Node
*
fusion_bias_node
=
nullptr
;
if
(
has_bias
)
{
if
(
ew_bias_add
!=
nullptr
)
{
if
(
with_conv_bias
)
{
auto
*
ew_bias_add_y_t
=
scope
->
FindVar
(
ew_bias_add_y
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
ew_bias_add_y_dims
=
ew_bias_add_y_t
->
dims
();
...
...
@@ -439,7 +470,7 @@ int Conv2dXPUFusePass::ApplyImpl(ir::Graph* graph,
filter_dims
[
0
]));
PrepareBias
(
graph
,
scope
,
block
,
ew_bias_add_y
,
&
fusion_bias_node
);
}
if
(
bn
!=
nullptr
)
{
if
(
with_bn
)
{
auto
bn_bias_t
=
scope
->
Var
(
bn_bias
->
Name
())
->
GetMutable
<
phi
::
DenseTensor
>
();
PADDLE_ENFORCE_EQ
(
filter_dims
[
0
],
...
...
@@ -469,7 +500,7 @@ int Conv2dXPUFusePass::ApplyImpl(ir::Graph* graph,
auto
filter_len
=
filter_t
->
numel
();
auto
filter_stride
=
filter_len
/
mean_len
;
float
epsilon
=
PADDLE_GET_CONST
(
float
,
bn
->
Op
()
->
GetAttr
(
"epsilon"
));
if
(
fusion_bias_node
==
nullptr
)
{
// prev node is conv
if
(
!
with_conv_bias
)
{
// prev node is conv
PrepareBias
(
graph
,
scope
,
block
,
bn_bias
,
&
fusion_bias_node
);
}
auto
fusion_bias_t
=
scope
->
Var
(
fusion_bias_node
->
Name
())
...
...
@@ -477,10 +508,10 @@ int Conv2dXPUFusePass::ApplyImpl(ir::Graph* graph,
float
*
fusion_bias_ptr
=
fusion_bias_t
->
mutable_data
<
float
>
(
paddle
::
platform
::
CPUPlace
());
// recompute bias and weights
if
(
ew_bias_add
==
nullptr
)
{
if
(
!
with_conv_bias
)
{
// prev node is conv
for
(
int
i
=
0
;
i
<
mean_len
;
++
i
)
{
bn_scale_ptr
[
i
]
=
bn_scale_ptr
[
i
]
/
sqrtf
(
bn_var_ptr
[
i
]
+
epsilon
);
fusion_bias_ptr
[
i
]
+=
(
0.
f
-
bn_mean_ptr
[
i
])
*
bn_scale_ptr
[
i
];
fusion_bias_ptr
[
i
]
+=
(
0.
0
f
-
bn_mean_ptr
[
i
])
*
bn_scale_ptr
[
i
];
for
(
int
j
=
0
;
j
<
filter_stride
;
j
++
)
{
filter_ptr
[
i
*
filter_stride
+
j
]
*=
bn_scale_ptr
[
i
];
}
...
...
@@ -488,21 +519,25 @@ int Conv2dXPUFusePass::ApplyImpl(ir::Graph* graph,
}
else
{
for
(
int
i
=
0
;
i
<
mean_len
;
++
i
)
{
bn_scale_ptr
[
i
]
=
bn_scale_ptr
[
i
]
/
sqrtf
(
bn_var_ptr
[
i
]
+
epsilon
);
bn_bias_ptr
[
i
]
+=
fusion_bias_ptr
[
i
]
=
bn_bias_ptr
[
i
]
+
(
fusion_bias_ptr
[
i
]
-
bn_mean_ptr
[
i
])
*
bn_scale_ptr
[
i
];
for
(
int
j
=
0
;
j
<
filter_stride
;
j
++
)
{
filter_ptr
[
i
*
filter_stride
+
j
]
*=
bn_scale_ptr
[
i
];
}
}
memcpy
(
fusion_bias_ptr
,
bn_bias_ptr
,
mean_len
*
sizeof
(
float
));
}
}
}
if
(
tensor_type
==
phi
::
DataType
::
FLOAT16
)
{
ConvertTensorType
<
float
,
float16
>
(
filter_t
);
}
// filter max
Node
*
filter_int16
=
nullptr
;
Node
*
filter_max
=
nullptr
;
PrepareWeight
<
int16_t
>
(
graph
,
scope
,
block
,
conv_filter
,
&
filter_int16
,
&
filter_max
,
false
);
bool
has_branch
=
with_branch_x
||
with_branch_y
;
// output && output max
std
::
string
conv2d_xpu_out_name
;
if
(
!
act_type
.
empty
())
{
...
...
paddle/phi/api/yaml/fused_ops.yaml
浏览文件 @
0a59825e
...
...
@@ -5,14 +5,14 @@
# otherwise the operator only could be used in static mode.
-
op
:
conv2d_xpu
args
:
(Tensor x, Tensor x_max, Tensor filter, Tensor filter_max, Tensor bias, Tensor branch, int[] paddings, int[] dilations, int[] strides, str padding_algorithm, int groups, bool has_bias, bool has_branch, int act_type, float act_param)
args
:
(Tensor x, Tensor x_max, Tensor filter, Tensor filter_max, Tensor bias, Tensor branch,
Tensor branch_max,
int[] paddings, int[] dilations, int[] strides, str padding_algorithm, int groups, bool has_bias, bool has_branch, int act_type, float act_param)
output
:
Tensor(out), Tensor(out_max)
infer_meta
:
func
:
Conv2dXPUInferMeta
kernel
:
func
:
conv2d_xpu
data_type
:
x
optional
:
bias, branch, x_max
optional
:
bias, branch,
branch_max ,
x_max
-
op
:
embedding_with_eltwise_add_xpu
args
:
(Tensor[] ids, Tensor[] tables, int64_t padding_idx)
...
...
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
0a59825e
...
...
@@ -58,7 +58,8 @@ XPUOpMap& get_kl2_ops() {
{
"atan_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"batch_norm_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"batch_norm"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"batch_norm"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"bmm"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"bmm_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
...
...
@@ -401,7 +402,8 @@ XPUOpMap& get_kl2_ops() {
{
"grid_sampler_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"grid_sampler"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"hard_sigmoid_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"hard_sigmoid"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"hard_sigmoid"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"hard_swish_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"hard_swish"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
...
...
@@ -438,7 +440,8 @@ XPUOpMap& get_kl2_ops() {
{
"layer_norm"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"leaky_relu_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"leaky_relu"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"leaky_relu"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"less_equal"
,
XPUKernelSet
({
phi
::
DataType
::
INT64
,
phi
::
DataType
::
INT32
,
...
...
@@ -554,7 +557,8 @@ XPUOpMap& get_kl2_ops() {
{
"reduce_max_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reduce_max"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reduce_mean_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reduce_mean"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reduce_mean"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"reduce_min_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reduce_min"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reduce_prod"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
...
...
@@ -646,7 +650,8 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
INT64
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
FLOAT16
})},
{
"sigmoid"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"sigmoid"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"sigmoid_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"sign"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"slice_grad"
,
...
...
@@ -676,7 +681,7 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
INT32
})},
{
"sqrt"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"sqrt"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"sqrt_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"square_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
...
...
@@ -733,7 +738,7 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
INT16
,
phi
::
DataType
::
INT32
})},
{
"sum"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"swish"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"swish"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"swish_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"tanh_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
...
...
paddle/phi/infermeta/fusion.cc
浏览文件 @
0a59825e
...
...
@@ -41,6 +41,7 @@ void Conv2dXPUInferMeta(const MetaTensor& x,
const
MetaTensor
&
filter_max
,
const
MetaTensor
&
bias
,
const
MetaTensor
&
branch
,
const
MetaTensor
&
branch_max
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
paddle/phi/infermeta/fusion.h
浏览文件 @
0a59825e
...
...
@@ -28,6 +28,7 @@ void Conv2dXPUInferMeta(const MetaTensor& x,
const
MetaTensor
&
filter_max
,
const
MetaTensor
&
bias
,
const
MetaTensor
&
branch
,
const
MetaTensor
&
branch_max
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
paddle/phi/kernels/activation_kernel.cc
浏览文件 @
0a59825e
...
...
@@ -63,7 +63,8 @@ PD_REGISTER_KERNEL(swish,
#if defined PADDLE_WITH_XPU
PD_REGISTER_KERNEL
(
relu6
,
XPU
,
ALL_LAYOUT
,
phi
::
Relu6Kernel
,
float
)
{}
PD_REGISTER_KERNEL
(
swish
,
XPU
,
ALL_LAYOUT
,
phi
::
SwishKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
swish
,
XPU
,
ALL_LAYOUT
,
phi
::
SwishKernel
,
float
,
phi
::
dtype
::
float16
)
{}
#endif
#ifdef PADDLE_WITH_MKLDNN
...
...
paddle/phi/kernels/batch_norm_kernel.cc
浏览文件 @
0a59825e
...
...
@@ -106,6 +106,10 @@ PD_REGISTER_KERNEL(batch_norm_infer,
phi
::
dtype
::
float16
)
{}
#endif
#ifdef PADDLE_WITH_XPU
PD_REGISTER_KERNEL
(
batch_norm_infer
,
XPU
,
ALL_LAYOUT
,
phi
::
BatchNormInferKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
batch_norm_infer
,
XPU
,
ALL_LAYOUT
,
phi
::
BatchNormInferKernel
,
float
,
phi
::
dtype
::
float16
)
{}
#endif
paddle/phi/kernels/fusion/xpu/conv2d_xpu_kernel.cc
浏览文件 @
0a59825e
...
...
@@ -27,6 +27,7 @@ void Conv2dXPUKernel(const Context& ctx,
const
DenseTensor
&
filter_max
,
const
paddle
::
optional
<
DenseTensor
>&
bias
,
const
paddle
::
optional
<
DenseTensor
>&
branch
,
const
paddle
::
optional
<
DenseTensor
>&
branch_max
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
@@ -69,10 +70,12 @@ void Conv2dXPUKernel(const Context& ctx,
branch
.
get_ptr
()
==
nullptr
?
nullptr
:
reinterpret_cast
<
const
XPUType
*>
(
branch
.
get_ptr
()
->
data
<
T
>
());
const
float
*
branch_max_data
=
branch_max
.
get_ptr
()
==
nullptr
?
nullptr
:
branch_max
.
get_ptr
()
->
data
<
float
>
();
const
float
*
bias_data
=
bias
.
get_ptr
()
==
nullptr
?
nullptr
:
bias
.
get_ptr
()
->
data
<
float
>
();
auto
*
out_data
=
reinterpret_cast
<
XPUType
*>
(
ctx
.
template
Alloc
<
T
>(
out
));
xpu
::
Activation_t
act
(
static_cast
<
xpu
::
Activation_t
::
act_enum
>
(
act_type
));
if
(
act_type
==
xpu
::
Activation_t
::
LEAKY_RELU
)
{
act
.
leaky_alpha
=
act_param
;
...
...
@@ -102,7 +105,7 @@ void Conv2dXPUKernel(const Context& ctx,
/* const float* bias */
bias_data
,
/* const TY* branch */
branch_data
,
/* const baidu::xpu::api::Activation_t& act */
act
,
/* const float* branch_maxptr */
nullptr
,
/* const float* branch_maxptr */
branch_max_data
,
/* const float* scale */
nullptr
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_xpu"
);
}
...
...
paddle/phi/kernels/xpu/activation_kernel.cc
浏览文件 @
0a59825e
...
...
@@ -195,6 +195,13 @@ void PowKernel(const Context& dev_ctx,
const
DenseTensor
&
x
,
const
Scalar
&
factor
,
DenseTensor
*
out
)
{
// using XPUType = typename XPUTypeTrait<T>::Type;
// // dev_ctx.template Alloc<T>(out);
// auto pow_factor = factor.to<T>();
// const auto* x_data = reinterpret_cast<const XPUType*>(x.data<T>());
// auto* y_data = reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(out));
// // const T* x_data = x.data<T>();
// // T* y_data = out->data<T>();
dev_ctx
.
template
Alloc
<
T
>(
out
);
float
pow_factor
=
factor
.
to
<
float
>
();
const
T
*
x_data
=
x
.
data
<
T
>
();
...
...
@@ -534,9 +541,28 @@ PD_REGISTER_KERNEL(
relu
,
XPU
,
ALL_LAYOUT
,
phi
::
ReluKernel
,
float
,
phi
::
dtype
::
float16
)
{}
PD_REGISTER_KERNEL
(
silu
,
XPU
,
ALL_LAYOUT
,
phi
::
SiluKernel
,
float
,
phi
::
dtype
::
float16
)
{}
#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
PD_REGISTER_KERNEL(name, XPU, ALL_LAYOUT, phi::func, float) {}
PD_REGISTER_KERNEL
(
sigmoid
,
XPU
,
ALL_LAYOUT
,
phi
::
SigmoidKernel
,
float
,
phi
::
dtype
::
float16
)
{}
PD_REGISTER_KERNEL
(
swish_raw
,
XPU
,
ALL_LAYOUT
,
phi
::
SwishRawKernel
,
float
,
phi
::
dtype
::
float16
)
{}
PD_REGISTER_KERNEL
(
hard_sigmoid
,
XPU
,
ALL_LAYOUT
,
phi
::
HardSigmoidKernel
,
float
,
phi
::
dtype
::
float16
)
{}
PD_REGISTER_KERNEL
(
leaky_relu
,
XPU
,
ALL_LAYOUT
,
phi
::
LeakyReluKernel
,
float
,
phi
::
dtype
::
float16
)
{}
PD_REGISTER_KERNEL
(
sqrt
,
XPU
,
ALL_LAYOUT
,
phi
::
SqrtKernel
,
float
,
phi
::
dtype
::
float16
)
{}
PD_REGISTER_KERNEL
(
tanh
,
XPU
,
ALL_LAYOUT
,
phi
::
TanhKernel
,
float
,
phi
::
dtype
::
float16
)
{}
...
...
@@ -547,18 +573,21 @@ PD_REGISTER_KERNEL(
PD_REGISTER_KERNEL
(
log
,
XPU
,
ALL_LAYOUT
,
phi
::
LogKernel
,
float
,
phi
::
dtype
::
float16
)
{}
#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
PD_REGISTER_KERNEL(name, XPU, ALL_LAYOUT, phi::func, float) {}
PD_REGISTER_ACTIVATION_KERNEL
(
exp
,
ExpKernel
)
// no grad
PD_REGISTER_ACTIVATION_KERNEL
(
floor
,
FloorKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
leaky_relu
,
LeakyReluKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
hard_sigmoid
,
HardSigmoidKernel
)
//
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
//
PD_REGISTER_ACTIVATION_KERNEL(hard_sigmoid, HardSigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL
(
hardswish
,
HardSwishKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
mish
,
MishKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
pow
,
PowKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
reciprocal
,
ReciprocalKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
relu6_raw
,
Relu6RawKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
sigmoid
,
SigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
sqrt
,
SqrtKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
swish_raw
,
SwishRawKernel
)
//
PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel)
//
PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel)
//
PD_REGISTER_ACTIVATION_KERNEL(swish_raw, SwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL
(
softplus
,
SoftplusKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
sin
,
SinKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
cos
,
CosKernel
)
paddle/phi/kernels/xpu/batch_norm_kernel.cc
浏览文件 @
0a59825e
...
...
@@ -39,6 +39,7 @@ void BatchNormKernel(const Context& dev_ctx,
DenseTensor
*
saved_mean
,
DenseTensor
*
saved_variance
,
DenseTensor
*
reserve_space
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
bool
test_mode
=
is_test
&&
(
!
trainable_statistics
);
bool
global_stats
=
test_mode
||
use_global_stats
;
const
auto
data_layout
=
phi
::
StringToDataLayout
(
data_layout_str
);
...
...
@@ -68,12 +69,12 @@ void BatchNormKernel(const Context& dev_ctx,
W
=
W
*
D
;
const
auto
*
x_data
=
x
.
data
<
T
>
(
);
const
auto
*
x_data
=
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()
);
const
auto
*
scale_data
=
scale
.
data
<
float
>
();
const
auto
*
bias_data
=
bias
.
data
<
float
>
();
// alloc memory
auto
*
y_data
=
dev_ctx
.
template
Alloc
<
T
>(
y
);
auto
*
y_data
=
reinterpret_cast
<
XPUType
*>
(
dev_ctx
.
template
Alloc
<
T
>(
y
)
);
dev_ctx
.
template
Alloc
<
float
>(
mean_out
);
dev_ctx
.
template
Alloc
<
float
>(
variance_out
);
dev_ctx
.
template
Alloc
<
float
>(
saved_mean
);
...
...
@@ -95,43 +96,48 @@ void BatchNormKernel(const Context& dev_ctx,
auto
*
saved_mean_data
=
saved_mean
->
data
<
float
>
();
auto
*
saved_variance_data
=
saved_variance
->
data
<
float
>
();
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
is_nchw
);
int
r
=
xpu
::
batch_norm
<
XPUType
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
is_nchw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm"
);
}
else
{
const
auto
*
mean_data
=
mean
.
data
<
float
>
();
const
auto
*
variance_data
=
variance
.
data
<
float
>
();
int
r
=
xpu
::
batch_norm_infer
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
,
is_nchw
);
int
r
=
xpu
::
batch_norm_infer
<
XPUType
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
,
is_nchw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_infer"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
batch_norm
,
XPU
,
ALL_LAYOUT
,
phi
::
BatchNormKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
batch_norm
,
XPU
,
ALL_LAYOUT
,
phi
::
BatchNormKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/reduce_mean_kernel.cc
浏览文件 @
0a59825e
...
...
@@ -50,4 +50,6 @@ void MeanRawKernel(const Context& dev_ctx,
}
// namespace phi
PD_REGISTER_KERNEL
(
mean_raw
,
XPU
,
ALL_LAYOUT
,
phi
::
MeanRawKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
mean_raw
,
XPU
,
ALL_LAYOUT
,
phi
::
MeanRawKernel
,
float
,
phi
::
dtype
::
float16
)
{
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录