fusion.cc 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/infermeta/fusion.h"
#include <vector>
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
21
#include "paddle/phi/kernels/cpu/conv_util.h"
W
wz1qqx 已提交
22
#include "paddle/phi/kernels/funcs/common_shape.h"
23 24
#include "paddle/phi/kernels/funcs/concat_funcs.h"
#include "paddle/phi/kernels/funcs/strided_slice.h"
25 26 27

namespace phi {

28 29 30 31 32
static phi::DDim BroadCastInferShape(const DDim x_dims,
                                     const DDim y_dims,
                                     int axis) {
  std::vector<int> out_dims_array(x_dims.size(), -1);
  if (x_dims != y_dims) {
W
wz1qqx 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    int max_dim = std::max(x_dims.size(), y_dims.size());
    if (x_dims.size() == y_dims.size()) {
      PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0),
                        true,
                        phi::errors::InvalidArgument(
                            "axis should be -1 or 0 while the dimension of "
                            "tensor X (%s) is equal to the dimension of "
                            "tensor Y (%s), but received axis: %s",
                            x_dims.size(),
                            y_dims.size(),
                            axis));
    }
    PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim),
                      true,
                      phi::errors::InvalidArgument(
                          "The axis range must be [%s, %s), but axis is %s. "
                          "Please set the axis again.",
                          -1 * max_dim,
                          max_dim,
                          axis));
    axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                     : axis);
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
57
    out_dims_array.resize(max_dim);
W
wz1qqx 已提交
58 59 60 61 62 63 64
    funcs::GetBroadcastDimsArrays(x_dims,
                                  y_dims,
                                  x_dims_array.data(),
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    return phi::make_ddim(out_dims_array);
  }
  return x_dims;
}

void AddActXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
                        const MetaTensor& y,
                        const MetaTensor& y_max,
                        int act_type,
                        MetaTensor* out,
                        MetaTensor* out_max) {
  int axis = -1;
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims != y_dims) {
    auto out_dims = BroadCastInferShape(x_dims, y_dims, axis);
W
wz1qqx 已提交
83 84
    out->set_dims(out_dims);
  } else {
85
    out->set_dims(x_dims);
W
wz1qqx 已提交
86 87 88 89 90 91 92 93 94
  }
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
  out_max->set_dims(phi::make_ddim({6}));
  out_max->set_dtype(x.dtype());
  out_max->set_layout(x.layout());
}

W
wz1qqx 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
void AddLayernormXPUInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              const MetaTensor& scale,
                              const MetaTensor& bias,
                              int64_t m,
                              int64_t n,
                              float epsilon,
                              MetaTensor* out,
                              MetaTensor* mean,
                              MetaTensor* variance,
                              MetaTensor* z_add) {
  int axis = -1;
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims != y_dims) {
    auto out_dims = BroadCastInferShape(x_dims, y_dims, axis);
    out->set_dims(out_dims);
  } else {
    out->set_dims(x_dims);
  }
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
  mean->set_dims(phi::make_ddim({m}));
  mean->set_dtype(DataType::FLOAT32);
  mean->set_layout(x.layout());
  variance->set_dims(phi::make_ddim({m}));
  variance->set_dtype(DataType::FLOAT32);
  variance->set_layout(x.layout());
  z_add->set_dims(phi::make_ddim({m, n}));
  z_add->set_dtype(x.dtype());
  z_add->set_layout(x.layout());
}

129 130 131 132 133 134 135 136 137 138 139 140 141
inline int ConvOutSize(int input_size,
                       int filter_size,
                       int dilation,
                       int pad_left,
                       int pad_right,
                       int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size =
      (input_size + (pad_left + pad_right) - dkernel) / stride + 1;

  return output_size;
}

142 143
void Conv2dXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
144 145 146 147
                        const MetaTensor& filter,
                        const MetaTensor& filter_max,
                        const MetaTensor& bias,
                        const MetaTensor& branch,
W
wz1qqx 已提交
148
                        const MetaTensor& branch_max,
149 150 151 152 153 154 155 156 157
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        const std::string& padding_algorithm,
                        int groups,
                        bool has_bias,
                        bool has_branch,
                        int act_type,
                        float act_param,
158 159 160
                        MetaTensor* out,
                        MetaTensor* out_max) {
  auto in_dims = x.dims();
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  auto filter_dims = filter.dims();
  // do some checks
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      4,
      phi::errors::InvalidArgument(
          "The input of Op(Conv_xpu) should be a 4-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
          in_dims.size(),
          in_dims));

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      filter_dims.size(),
      phi::errors::InvalidArgument(
          "The input's dimension and filter's dimension of "
          "Op(Conv_xpu) should be equal. But received: the input's shape is "
          "[%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));

  const auto input_channels = in_dims[1];
  int stride_size = strides.size();
  int in_sub_stride_size = in_dims.size() - stride_size;
  int dilation_size = dilations.size();
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      strides.size() + 2U,
      phi::errors::InvalidArgument(
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv_xpu). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
          in_sub_stride_size));

  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i],
        0,
        phi::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }

  PADDLE_ENFORCE_EQ(
      input_channels,
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv_xpu). But received: the input's channels is "
          "%d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d. ",
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups));

  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
          filter_dims[0],
          filter_dims,
          groups));

  // update paddings and dilations accoring to padding_algorithm
  std::vector<int> paddings_vec = paddings;
  std::vector<int> dilations_vec = dilations;
  DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
  DDim filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  phi::UpdatePaddingAndDilation(&paddings_vec,
                                &dilations_vec,
                                padding_algorithm,
                                in_data_dims,
                                strides,
                                ksize);

  std::vector<int64_t> out_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < strides.size(); ++i) {
    out_shape.push_back(ConvOutSize(in_dims[i + 2],
                                    filter_dims[i + 2],
                                    dilations[i],
                                    paddings_vec[i * 2],
                                    paddings_vec[i * 2 + 1],
                                    strides[i]));
  }
  // set output and output max dims
265
  out->set_dims(DDim(out_shape.data(), out_shape.size()));
Z
zhupengyang 已提交
266
  out_max->set_dims(phi::make_ddim({6}));
267 268
}

269 270 271
void EmbeddingWithEltwiseAddXPUInferMeta(
    const std::vector<const MetaTensor*>& ids,
    const std::vector<const MetaTensor*>& tables,
272 273 274 275
    const MetaTensor& mask,
    MetaTensor* out,
    MetaTensor* seq_lod,
    MetaTensor* max_seq_len) {
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  PADDLE_ENFORCE_GT(ids.size(),
                    0UL,
                    phi::errors::InvalidArgument(
                        "The input ids in EmbeddingWithEltwiseAddXPUInferMeta "
                        "can't be empty."));
  PADDLE_ENFORCE_GT(tables.size(),
                    0UL,
                    phi::errors::InvalidArgument(
                        "The input tables in "
                        "EmbeddingWithEltwiseAddXPUInferMeta can't be empty."));

  auto id_dims = ids[0]->dims();
  auto table_dims = tables[0]->dims();
  out->set_dims(phi::make_ddim({id_dims[0], id_dims[1], table_dims[1]}));
  out->set_dtype(tables[0]->dtype());
  out->set_layout(ids[0]->layout());
}

294
void FcXPUInferMeta(const MetaTensor& x,
295
                    const MetaTensor& x_max,
296 297 298 299 300 301 302 303 304
                    const MetaTensor& w,
                    const MetaTensor& w_max,
                    const MetaTensor& bias,
                    int in_num_col_dims,
                    bool transpose_x,
                    float alpha,
                    float beta,
                    int act_type,
                    float act_alpha,
305 306
                    MetaTensor* out,
                    MetaTensor* out_max) {
307 308 309 310 311 312 313 314
  std::vector<int> out_shape(in_num_col_dims + 1);
  for (int i = 0; i < in_num_col_dims; i++) {
    out_shape[i] = x.dims()[i];
  }
  out_shape[in_num_col_dims] = w.dims()[0];
  out->set_dims(DDim(out_shape.data(), out_shape.size()));
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
Z
zhupengyang 已提交
315
  out_max->set_dims(phi::make_ddim({6}));
316 317
  out_max->set_dtype(x.dtype());
  out_max->set_layout(x.layout());
318 319
}

320 321 322 323 324 325 326 327
void GenerateSequenceXPUInferMeta(const MetaTensor& x,
                                  DataType dtype,
                                  MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(dtype);
  out->set_layout(x.layout());
}

328 329 330 331 332 333 334 335
void MultiEncoderXPUInferMeta(
    const MetaTensor& x,
    const std::vector<const MetaTensor*>& fc_weight,
    const std::vector<const MetaTensor*>& fc_weight_max,
    const std::vector<const MetaTensor*>& fc_bias,
    const std::vector<const MetaTensor*>& ln_scale,
    const std::vector<const MetaTensor*>& ln_bias,
    const MetaTensor& mask,
336 337
    const MetaTensor& seq_lod,
    const MetaTensor& max_seq_len,
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    int layer_num,
    bool norm_before,
    int hidden_dim,
    int head_num,
    int size_per_head,
    int ffn_hidden_dim_scale,
    int act_type,
    int relative_type,
    int slice_idx,
    MetaTensor* out,
    MetaTensor* x_fp16,
    MetaTensor* out_fp16) {
  auto x_dims = x.dims();
  x_fp16->set_dims(x_dims);
  x_fp16->set_dtype(DataType::FLOAT16);
  x_fp16->set_layout(x.layout());
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out_fp16->set_dtype(DataType::FLOAT16);
  out_fp16->set_layout(x.layout());
  if (slice_idx == -1) {
    out->set_dims(x_dims);
    out_fp16->set_dims(x_dims);
  } else {
    out->set_dims({x_dims[0], x_dims[2]});
    out_fp16->set_dims({x_dims[0], x_dims[2]});
  }
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
void FusedMultiTransformerXpuInferMeta(
    const MetaTensor& x,
    const std::vector<const MetaTensor*>& ln_scale,
    const std::vector<const MetaTensor*>& ln_bias,
    const std::vector<const MetaTensor*>& qkvw,
    const std::vector<const MetaTensor*>& qkvw_max,
    const std::vector<const MetaTensor*>& qkv_bias,
    const std::vector<const MetaTensor*>& out_linear_w,
    const std::vector<const MetaTensor*>& out_linear_wmax,
    const std::vector<const MetaTensor*>& out_linear_bias,
    const std::vector<const MetaTensor*>& ffn_ln_scale,
    const std::vector<const MetaTensor*>& ffn_ln_bias,
    const std::vector<const MetaTensor*>& ffn1_weight,
    const std::vector<const MetaTensor*>& ffn1_weight_max,
    const std::vector<const MetaTensor*>& ffn1_bias,
    const std::vector<const MetaTensor*>& ffn2_weight,
    const std::vector<const MetaTensor*>& ffn2_weight_max,
    const std::vector<const MetaTensor*>& ffn2_bias,
    const std::vector<const MetaTensor*>& cache_kv,
    const std::vector<const MetaTensor*>& pre_caches,
    const std::vector<const MetaTensor*>& rotary_pos_emb,
    const std::vector<const MetaTensor*>& time_step,
    const std::vector<const MetaTensor*>& seq_lengths,
    const std::vector<const MetaTensor*>& src_mask,
391
    const std::vector<const MetaTensor*>& gather_index,
392 393 394 395 396 397 398 399 400
    bool pre_layer_norm,
    int rotary_emb_dims,
    float epsilon,
    float dropout_rate,
    bool is_test,
    const std::string& dropout_implementation,
    const std::string& act_method,
    bool trans_qkvw,
    int ring_id,
401
    int gather_axis,
402 403 404 405
    MetaTensor* out,
    std::vector<MetaTensor*> cache_kv_out) {
  auto x_dim = x.dims();
  auto y_dim = qkvw[0]->dims();
406 407 408 409 410 411
  PADDLE_ENFORCE_EQ(x_dim.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The dimensions of x must be 3(batch_size, seq_len, "
                        "dim_embed), but received dimensions of Input is [%d]",
                        x_dim.size()));
412 413 414
  PADDLE_ENFORCE_EQ(
      y_dim.size(),
      4,
415 416 417 418
      phi::errors::InvalidArgument(
          "The dimensions of qkv_weight must be 4(3, num_head, dim_head, "
          "dim_embed), but received dimensions of qkv_weight is [%d]",
          y_dim.size()));
419 420 421 422
  PADDLE_ENFORCE_EQ(
      x_dim[2],
      trans_qkvw ? y_dim[3] : y_dim[0],
      phi::errors::InvalidArgument(
423 424 425
          "The dimension of x_dim[2] and y_dim[3](trans_qkvw is  true) or "
          "y_dim[0](trans_qkvw is false) must be equal, but received: the "
          "shape of input x = [%s], and the shape of input qkv_weight = [%s]",
426 427 428 429 430 431 432 433 434 435 436 437 438 439
          x_dim,
          y_dim));
  if (cache_kv.size() > 0) {
    const auto& c_dim = cache_kv[0]->dims();
    PADDLE_ENFORCE_EQ(
        c_dim.size(),
        5,
        phi::errors::InvalidArgument("The CacheKV must be 5 dims, but got %d",
                                     c_dim.size()));
    PADDLE_ENFORCE_EQ(c_dim[0],
                      2,
                      phi::errors::InvalidArgument(
                          "The first dim of CacheKV must be 2, but got %d",
                          c_dim[0]));  // 2
440 441 442 443 444 445 446 447 448 449 450 451 452 453
    PADDLE_ENFORCE_EQ(
        c_dim[3],
        trans_qkvw ? y_dim[1] : y_dim[2],
        phi::errors::InvalidArgument("The fourth dim of CacheKV must be equal "
                                     "with num head %d, but got %d",
                                     trans_qkvw ? y_dim[1] : y_dim[2],
                                     c_dim[3]));  // num_head
    PADDLE_ENFORCE_EQ(
        c_dim[4],
        trans_qkvw ? y_dim[2] : y_dim[3],
        phi::errors::InvalidArgument("The fifth dim of CacheKV must be equal "
                                     "with head size %d, but got %d",
                                     trans_qkvw ? y_dim[2] : y_dim[3],
                                     c_dim[4]));  // head_size
454 455 456 457 458 459 460
  }

  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
void YoloBoxXPUInferMeta(const MetaTensor& x,
                         const MetaTensor& x_max,
                         const MetaTensor& grid,
                         const MetaTensor& stride,
                         const MetaTensor& anchor_grid,
                         float offset,
                         MetaTensor* out,
                         MetaTensor* out_max) {
  auto x_dims = x.dims();
  auto x_dims_size = x_dims.size();
  PADDLE_ENFORCE_GT(
      x_dims[x_dims_size - 1],
      4,
      phi::errors::InvalidArgument(
          "The last dim of x should be larget than 4, but received "
          " is %d.",
          x_dims[x_dims_size - 1]));
  // compute left out_dims
  // y[..., 0:2] = (x[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy
  std::vector<int> axes_ = {x_dims_size - 1};
  std::vector<int> infer_flags_ = {1};
  std::vector<int> decrease_axis_ = {-1};
  std::vector<int64_t> strides_ = {1};
  std::vector<int64_t> starts_l = {0};
  std::vector<int64_t> ends_l = {2};
  std::vector<int64_t> left_slice_out_dims_vector(x_dims_size, -1);
  phi::funcs::StridedSliceOutDims(starts_l,
                                  ends_l,
                                  strides_,
                                  axes_,
                                  infer_flags_,
                                  x_dims,
                                  decrease_axis_,
                                  left_slice_out_dims_vector.data(),
                                  1,
                                  true);
  auto left_slice_out_dims = phi::make_ddim(left_slice_out_dims_vector);
  auto grid_dims = grid.dims();
  auto left_add_out_dims =
      BroadCastInferShape(left_slice_out_dims, grid_dims, -1);
  auto stride_dims = stride.dims();
  auto left_mul_out_dims =
      BroadCastInferShape(left_add_out_dims, stride_dims, -1);
  // compute mid out_dims
  // wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]             # wh
  std::vector<int64_t> starts_m = {2};
  std::vector<int64_t> ends_m = {4};
  std::vector<int64_t> mid_slice_out_dims_vector(x_dims_size, -1);
  phi::funcs::StridedSliceOutDims(starts_m,
                                  ends_m,
                                  strides_,
                                  axes_,
                                  infer_flags_,
                                  x_dims,
                                  decrease_axis_,
                                  mid_slice_out_dims_vector.data(),
                                  1,
                                  true);
  auto mid_slice_out_dims = phi::make_ddim(mid_slice_out_dims_vector);
  auto anchor_grid_dims = anchor_grid.dims();
  auto mid_mul_out_dims =
      BroadCastInferShape(mid_slice_out_dims, anchor_grid_dims, -1);
  // compute right out_dims
  std::vector<int64_t> starts_r = {4};
  std::vector<int64_t> ends_r = {2147483647};
  std::vector<int64_t> right_slice_out_dims_vector(x_dims_size, -1);
  phi::funcs::StridedSliceOutDims(starts_r,
                                  ends_r,
                                  strides_,
                                  axes_,
                                  infer_flags_,
                                  x_dims,
                                  decrease_axis_,
                                  right_slice_out_dims_vector.data(),
                                  1,
                                  true);
  auto right_slice_out_dims = phi::make_ddim(right_slice_out_dims_vector);
  // compute concat out_dims
  std::vector<phi::DDim> in_dims;
  in_dims.reserve(3);
  in_dims.emplace_back(left_mul_out_dims);
  in_dims.emplace_back(mid_mul_out_dims);
  in_dims.emplace_back(right_slice_out_dims);
  phi::DDim out_dim =
      phi::funcs::ComputeAndCheckShape(false, in_dims, x_dims_size - 1);

  out->set_dims(out_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out_max->set_dims(phi::make_ddim({6}));
  out_max->set_dtype(x.dtype());
  out_max->set_layout(x.layout());
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
void ConvTransposeXPUInferMeta(const MetaTensor& x,
                               const MetaTensor& filter,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               const std::vector<int>& output_padding,
                               const std::vector<int>& output_size,
                               const std::string& padding_algorithm,
                               int groups,
                               const std::vector<int>& dilations,
                               const std::string& data_format,
                               MetaTensor* out,
                               MetaTensor* out_max) {
  auto x_dims = x.dims();
  auto filter_dims = filter.dims();
  std::vector<int> paddings_ = paddings;
  std::vector<int> dilations_ = dilations;
  PADDLE_ENFORCE_EQ(
      x_dims.size() == 4,
      true,
      errors::InvalidArgument("Input of Op(conv_transpose) should be 4-D "
                              "Tensor. But received: %u-D Tensor, "
                              "the shape of input is [%s]",
                              x_dims.size(),
                              x_dims));
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      filter_dims.size(),
      errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          x_dims,
          x_dims.size(),
          filter_dims,
          filter_dims.size()));

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0,
        errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = x_dims.size() - stride_size;

  PADDLE_ENFORCE_EQ(
      x_dims.size() - strides.size(),
      2U,
      errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size,
          x_dims.size(),
          x_dims,
          strides.size()));
  if (output_size.size())
    PADDLE_ENFORCE_EQ(
        output_size.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
  if (output_padding.size())
    PADDLE_ENFORCE_EQ(
        output_padding.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));

  const int64_t C =
      (data_format != "NHWC" ? x_dims[1] : x_dims[x_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C,
      filter_dims[0],
      errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C,
          x_dims,
          filter_dims[0],
          filter_dims,
          data_format));

  DDim x_data_dims;
  if (data_format != "NHWC") {
    x_data_dims = slice_ddim(x_dims, 2, x_dims.size());
  } else {
    x_data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1);
  }
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings_, &dilations_, padding_algorithm, x_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({x_dims[0]});
  if (data_format != "NHWC") {
    output_shape.push_back(filter_dims[1] * groups);
  }
  const int offset = (data_format != "NHWC" ? 2 : 1);
  for (size_t i = 0; i < strides.size(); ++i) {
    auto filter_extent = dilations_[i] * (filter_dims[i + 2] - 1) + 1;
    auto infer_shape = (x_dims[i + offset] > 0)
                           ? (x_dims[i + offset] - 1) * strides[i] -
                                 paddings_[2 * i] - paddings_[2 * i + 1] +
                                 filter_extent
                           : -1;
    if (output_size.size()) {
      output_shape.push_back(output_size[i]);
    } else if (output_padding.size()) {
      output_shape.push_back((infer_shape + output_padding[i]));
    } else {
      output_shape.push_back(infer_shape);
    }
  }
  if (data_format == "NHWC") {
    output_shape.push_back(filter_dims[1] * groups);
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(x.dtype());
  out_max->set_dims(phi::make_ddim({6}));
}

void Conv2dTransposeXPUInferMeta(const MetaTensor& x,
                                 const MetaTensor& x_max,
                                 const MetaTensor& filter,
                                 const MetaTensor& filter_max,
                                 const MetaTensor& bias,
                                 const std::vector<int>& strides,
                                 const std::vector<int>& paddings,
                                 const std::vector<int>& output_padding,
                                 const IntArray& output_size,
                                 const std::string& padding_algorithm,
                                 int groups,
                                 const std::vector<int>& dilations,
                                 const std::string& data_format,
                                 bool has_bias,
                                 bool with_act,
                                 const std::string& act_type,
                                 MetaTensor* out,
                                 MetaTensor* out_max) {
  std::vector<int32_t> vec_output_size(output_size.GetData().begin(),
                                       output_size.GetData().end());
  ConvTransposeXPUInferMeta(x,
                            filter,
                            strides,
                            paddings,
                            output_padding,
                            vec_output_size,
                            padding_algorithm,
                            groups,
                            dilations,
                            data_format,
                            out,
                            out_max);
}

723
}  // namespace phi