test_layers.py 125.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19
import contextlib
import numpy as np
20
from decorator_helper import prog_scope
21 22
import inspect
from six.moves import filter
23 24 25

import paddle
import paddle.fluid as fluid
26
from paddle.fluid.layers.device import get_places
27 28 29
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
30
from paddle.fluid import core
J
jerrywgz 已提交
31
from paddle.fluid.initializer import Constant
32 33
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
34 35
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
36
from paddle.fluid.dygraph import to_variable
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59 60 61 62 63

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

64 65 66 67 68 69
    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
70 71 72
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
73 74
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
80 81 82 83 84 85
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield


class TestLayer(LayerTest):
86 87
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
88 89 90 91 92 93 94 95 96 97
            def __init__(self, input_size, linear1_size=4):
                super(CustomLayer, self).__init__()
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False)
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
98 99 100 101 102
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
103 104
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
105
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
106
            ret = custom(x, do_linear2=True)
107 108
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))

S
songyouwei 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            ret = linear(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
            t = base.to_variable(inp)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

131 132 133 134 135 136 137 138
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
139 140 141 142
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
143 144 145 146 147 148 149 150
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
151
            lm = nn.LayerNorm(
152
                normalized_shape=[32, 32],
153 154
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
155 156 157 158
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
159
            lm = nn.LayerNorm(
160
                normalized_shape=[32, 32],
161 162
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
163
            dy_ret = lm(base.to_variable(inp))
164
            dy_ret_value = dy_ret.numpy()
165 166
        with self.dynamic_graph():
            lm = nn.LayerNorm(
167
                normalized_shape=[32, 32],
168 169 170 171 172 173 174 175 176
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
177

178
        self.assertTrue(np.array_equal(static_ret, static_ret2))
179
        self.assertTrue(np.array_equal(dy_ret_value, static_ret2))
180

181 182 183 184 185 186 187 188
        with self.dynamic_graph():
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

189 190 191 192 193 194 195 196 197 198 199
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
200
            dy_ret_value = dy_ret.numpy()
201

202
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
221
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
222
            dy_ret_value = dy_ret.numpy()
223

224
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
225

226 227 228 229 230 231 232 233 234 235 236
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
237 238
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
239 240 241 242 243 244 245 246
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
247 248
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
249
            dy_ret = conv2d(base.to_variable(images))
250
            dy_ret_value = dy_ret.numpy()
251

252 253 254
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
255 256 257 258
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                bias_attr=False)
259
            dy_ret = conv2d(base.to_variable(images))
260
            self.assertTrue(conv2d.bias is None)
261

262
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
263
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
264

265 266 267 268 269 270
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
271 272
            conv2d1 = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
273
            conv2d2 = nn.Conv2D(
274
                num_channels=3,
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

M
minqiyang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
325
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
326 327 328 329 330 331 332 333
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
334
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
335 336
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))
337 338 339
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
340 341 342

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
343
            self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i]))
M
minqiyang 已提交
344

345 346 347 348 349
        with self.dynamic_graph():
            custom_weight = np.random.randn(D, D * 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
350 351
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            self.assertFalse(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
            self.assertTrue(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            self.assertTrue(
                np.array_equal(gru1.bias.numpy(), gru2.bias.numpy()))

X
Xin Pan 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
410 411 412 413 414
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
415 416
            dy_ret_value = dy_ret.numpy()
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
X
Xin Pan 已提交
417 418 419 420 421 422

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
423 424
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
425 426
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
427

428 429
        self.assertTrue(np.allclose(n, min_ret_value))
        self.assertTrue(np.allclose(n2, max_ret_value))
X
Xin Pan 已提交
430

431 432 433 434 435 436 437 438 439 440 441 442 443
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
444
            out = layers.sequence_conv(seq, 2, act='sigmoid')
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
462
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
463 464 465 466 467 468 469 470 471 472 473
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
474
            np.array_equal(np.array(static_rlt), np.array(static_rlt2)))
475 476 477 478 479 480

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
481 482
                input=img,
                num_filters=10,
483
                filter_size=27,
484 485
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
486 487 488 489 490
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
491
                num_channels=3,
492
                num_filters=10,
493
                filter_size=27,
494 495
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
496 497 498 499 500
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv2d_transpose = nn.Conv2DTranspose(
501
                num_channels=3,
502
                num_filters=10,
503
                filter_size=27,
504 505
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
506
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
507
            dy_rlt_value = dy_rlt.numpy()
508
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
509
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt2))
510

511 512 513 514 515 516 517
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv2d1 = nn.Conv2DTranspose(
518
                num_channels=3, num_filters=3, filter_size=[2, 2])
519
            conv2d2 = nn.Conv2DTranspose(
520
                num_channels=3,
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
562 563 564 565 566 567
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
568 569 570 571

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
572

573 574 575 576 577 578 579 580 581 582 583
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
584
            btp = nn.BilinearTensorProduct(
585 586
                3,
                3,
587 588 589
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
590 591 592 593 594
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
595
            btp = nn.BilinearTensorProduct(
596 597
                3,
                3,
598 599 600
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
601
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
602
            dy_rlt_value = dy_rlt.numpy()
603
        with self.dynamic_graph():
604
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
605 606
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
607
            dy_rlt2_value = dy_rlt2.numpy()
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        with self.static_graph():
            data_x2 = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y2 = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid')

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out2])[0]

626
        self.assertTrue(np.array_equal(dy_rlt2_value, static_rlt3))
627
        self.assertTrue(np.array_equal(static_rlt2, static_rlt))
628
        self.assertTrue(np.array_equal(dy_rlt_value, static_rlt))
629

630 631 632 633 634
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
635
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
636
            btp2 = nn.BilinearTensorProduct(
637
                3, 3, 6, act='sigmoid', param_attr=weight_attr)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
            self.assertTrue(
                np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
            self.assertTrue(
                np.array_equal(btp1.bias.numpy(), btp2.bias.numpy()))

658
    def prelu_test(self, mode):
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            prelu = nn.PRelu(
                mode=mode,
679
                input_shape=data_t.shape,
680 681 682 683 684 685 686 687
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
            prelu = nn.PRelu(
                mode=mode,
688
                input_shape=inp_np.shape,
689 690
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))
691
            dy_rlt_value = dy_rlt.numpy()
692 693

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
694
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
695

696 697 698 699 700
        with self.dynamic_graph():
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
            prelu1 = nn.PRelu(
                mode=mode,
701
                input_shape=inp_np.shape,
702 703 704
                param_attr=ParamAttr(initializer=Constant(2.0)))
            prelu2 = nn.PRelu(
                mode=mode,
705
                input_shape=inp_np.shape,
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            prelu2.weight = prelu1.weight
            self.assertTrue(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))

721 722 723 724 725
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
741
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
742 743 744 745 746
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
            emb2 = nn.Embedding(
747
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
748 749
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
750 751

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
752
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
753

754 755 756 757 758
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
759
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
760
            emb2 = nn.Embedding(
761
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False)
762 763 764 765 766 767 768 769 770 771 772 773 774
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
            self.assertTrue(np.array_equal(emb2.weight.numpy(), custom_weight))
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
            self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

            emb2.weight = emb1.weight
            self.assertTrue(
                np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

775 776 777 778
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
779
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
780 781 782 783 784 785 786
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
787
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
788 789
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
790 791 792 793 794
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

795
                emb = fluid.embedding(
796 797 798 799 800 801 802
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
803
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
804
            nce_loss = layers.nce(input=embs,
805
                                  label=wl,
806 807 808 809 810 811
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
812 813
                                  bias_attr='nce.b',
                                  sample_weight=sample_weights)
814 815 816 817 818 819 820 821 822 823
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
824
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
825 826
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
827
            emb = nn.Embedding(
828
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
829 830 831 832 833 834 835 836 837 838

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
839 840
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs2.shape[1],
841 842 843 844 845
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
846 847
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
848

849 850
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
851 852 853 854 855 856 857 858 859 860 861
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

        with self.dynamic_graph(force_to_use_cpu=True):
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
862 863
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
864
            emb = nn.Embedding(
865
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
866 867 868 869 870 871 872 873 874 875

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
876 877
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs3.shape[1],
878 879 880 881 882
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
883 884
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
885

886 887
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
888
            dy_rlt_value = dy_rlt.numpy()
889 890

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
891
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
892

893 894 895 896 897 898 899 900 901 902 903
        with self.dynamic_graph(force_to_use_cpu=True):
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
            emb = nn.Embedding(
904
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
905 906 907 908 909 910 911 912 913 914

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
915 916
            nce1 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
917 918 919 920 921 922 923 924
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
                          param_attr='nce1.w',
                          bias_attr='nce1.b',
                          sample_weight=sample_weights)

925 926
            nce2 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
927 928 929 930
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
931
                          param_attr=weight_attr,
932 933 934
                          bias_attr='nce2.b',
                          sample_weight=sample_weights)

935 936 937
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
938 939 940 941
            self.assertFalse(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
942 943
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
944 945 946 947 948 949 950 951 952 953
            self.assertTrue(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
            self.assertTrue(
                np.array_equal(nce1.weight.numpy(), nce2.weight.numpy()))
            self.assertTrue(
                np.array_equal(nce1.bias.numpy(), nce2.bias.numpy()))

L
lujun 已提交
954 955 956 957
    def test_conv3d(self):
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
958
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
959 960 961 962 963 964 965 966
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
967
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
968 969 970 971 972 973 974 975
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
976
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
977
            dy_ret = conv3d(base.to_variable(images))
978
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
979

980
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
981 982
        self.assertTrue(np.allclose(static_ret, static_ret2))

983 984 985 986 987 988
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
989
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
990
            conv3d2 = nn.Conv3D(
991 992 993 994
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr)
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

L
lujun 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.row_conv(input=x, future_context_size=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
1053
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
L
lujun 已提交
1054
                },
1055 1056
                fetch_list=[ret],
                with_lod=True)[0]
L
lujun 已提交
1057

1058
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_group_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.group_norm(input=X, groups=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1095
            groupNorm = nn.GroupNorm(channels=shape[1], groups=2)
L
lujun 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
            ret = groupNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1106
            groupNorm = nn.GroupNorm(channels=shape[1], groups=2)
L
lujun 已提交
1107
            dy_ret = groupNorm(base.to_variable(input))
1108
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1109

1110
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place),
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1146
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            ret = spectralNorm(Weight)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1157
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1158
            dy_ret = spectralNorm(base.to_variable(input))
1159
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1160

1161
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
1186
            ret = fluid.contrib.layers.tree_conv(
L
lujun 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            treeConv = nn.TreeConv(
1216
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
            ret = treeConv(NodesVector, EdgeSet)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.dynamic_graph():
            treeConv = nn.TreeConv(
1230
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1231
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
1232
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1233 1234

        self.assertTrue(np.allclose(static_ret, static_ret2))
1235
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1236

1237 1238 1239 1240 1241 1242
        with self.dynamic_graph():
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            treeConv1 = nn.TreeConv(
1243
                feature_size=5,
1244 1245 1246 1247 1248
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b')
            treeConv2 = nn.TreeConv(
1249
                feature_size=5,
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b')
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
            self.assertTrue(
                np.array_equal(treeConv1.weight.numpy(),
                               treeConv2.weight.numpy()))
            self.assertTrue(
                np.array_equal(treeConv1.bias.numpy(), treeConv2.bias.numpy()))

L
lujun 已提交
1276 1277 1278 1279 1280 1281 1282
    def test_conv3d_transpose(self):
        input_array = np.arange(0, 48).reshape(
            [2, 3, 2, 2, 2]).astype('float32')

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            out = layers.conv3d_transpose(
1283
                input=img, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1284 1285 1286 1287 1288
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            conv3d_transpose = nn.Conv3DTranspose(
1289
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1290 1291 1292 1293 1294
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv3d_transpose = nn.Conv3DTranspose(
1295
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1296
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
1297
            dy_rlt_value = dy_rlt.numpy()
L
lujun 已提交
1298
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1299
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
L
lujun 已提交
1300

1301 1302 1303 1304 1305 1306 1307
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv3d1 = nn.Conv3DTranspose(
1308
                num_channels=3,
1309 1310 1311 1312 1313
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False)
            conv3d2 = nn.Conv3DTranspose(
1314
                num_channels=3,
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
            eye_tensor_rlt1 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[3])
            eye_tensor_rlt2 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[4, 3])
            diag_tensor = layers.eye(20)
1359 1360 1361 1362 1363 1364 1365 1366
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
        self.assertTrue(np.allclose(eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(diag_tensor_value, np.eye(20)))
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

H
huangjun12 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    def test_hard_swish(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.hard_swish(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.hard_swish(base.to_variable(t))
1388
            dy_ret_rlt = dy_ret.numpy()
H
huangjun12 已提交
1389

1390
        self.assertTrue(np.allclose(static_ret, dy_ret_rlt))
H
huangjun12 已提交
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
            static_ret = self.get_static_graph_result(
                feed={"a": value_a,
                      "b": value_b}, fetch_list=[cond])[0]
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

1408 1409
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a,
                      "b1": value_b}, fetch_list=[cond1])[0]
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

        #greater than
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a,
                      "b2": value_b}, fetch_list=[cond2])[0]
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

        #greater equal
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a,
                      "b3": value_b}, fetch_list=[cond3])[0]
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a,
                      "b4": value_b}, fetch_list=[cond4])[0]
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a,
                      "b5": value_b}, fetch_list=[cond5])[0]
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False)
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False)
            crop_shape1 = (1, 2, 4, 4)
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False)
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False)
            crop_offsets3 = [0, dim1, dim2, 0]

            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3)

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 32, 32).astype("float32")
            y = np.array([[1], [0], [1]])
            static_out = exe.run(feed={"input": x,
                                       "label": y},
                                 fetch_list=result[0])

        with self.dynamic_graph():
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

        self.assertTrue(np.array_equal(static_out[0], dynamic_out.numpy()))

Y
Yu Yang 已提交
1547

1548 1549 1550 1551 1552 1553 1554
class TestBook(LayerTest):
    def test_all_layers(self):
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1555 1556 1557
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
                        force_to_use_cpu=self._force_to_use_cpu)
                else:
                    assert method.__name__ in ('make_get_places')
                    continue

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1579
                dy_result_value = dy_result.numpy()
1580

1581
        self.assertTrue(np.array_equal(static_result[0], dy_result_value))
1582 1583 1584 1585

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1586
            shape = [self._batch_size] + shape
1587 1588 1589 1590 1591
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
M
minqiyang 已提交
1592 1593
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
1594
        elif dtype == 'int64':
M
minqiyang 已提交
1595 1596
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

    def _get_data(self,
                  name,
                  shape,
                  dtype,
                  set_feed_dict=True,
                  append_batch_size=True):
        if base.enabled():
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name)
        else:
            if set_feed_dict:
                self._feed_dict[name] = self._get_np_data(shape, dtype,
                                                          append_batch_size)
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size)

    def make_sampled_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
1621
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
1622
            label = self._get_data(name='Label', shape=[1], dtype='int64')
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
            num_samples = 25
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
            return (output)

    def make_fit_a_line(self):
        with program_guard(
                fluid.default_main_program(),
                startup_program=fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
1633
            y_predict = layers.fc(input=x, size=1, act=None)
1634
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
1635
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
1636
            avg_cost = layers.mean(cost)
1637
            return (avg_cost)
Y
Yu Yang 已提交
1638

1639 1640 1641
    def make_recognize_digits_mlp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
1642
            # Change g_program, so the rest layers use `g_program`
1643 1644
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1645 1646
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
1647 1648 1649 1650
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
1651
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1652
            avg_cost = layers.mean(cost)
1653
            return (avg_cost)
Y
Yu Yang 已提交
1654

1655 1656 1657 1658 1659 1660
    def make_conv2d_transpose(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
1661

1662 1663 1664 1665
    def make_recognize_digits_conv(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            images = self._get_data(
Y
Yu Yang 已提交
1666
                name='pixel', shape=[1, 28, 28], dtype='float32')
1667
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1685
            avg_cost = layers.mean(cost)
1686
            return avg_cost
Y
Yu Yang 已提交
1687

1688 1689 1690
    def make_word_embedding(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
1691 1692
            dict_size = 10000
            embed_size = 32
1693 1694 1695 1696 1697 1698
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64')
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
1731
            avg_cost = layers.mean(cost)
1732
            return (avg_cost)
Y
Yu Yang 已提交
1733

1734 1735 1736 1737 1738
    def make_sigmoid_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
1739
            ignore_index = -1
1740 1741 1742 1743 1744 1745 1746 1747 1748
            return (layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index))

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
            return (layers.hsigmoid(input=x, label=y, num_classes=2))
W
weixing02 已提交
1749

J
JiabinYang 已提交
1750
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
1751 1752
        program2 = Program()
        with program_guard(program2):
1753 1754 1755
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
            path_table = self._get_data(
1756
                name='path_table', shape=[4, 6], dtype='int64')
1757
            path_code = self._get_data(
1758
                name='path_code', shape=[4, 6], dtype='int64')
1759 1760 1761 1762 1763 1764 1765
            return (layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True))
J
JiabinYang 已提交
1766

1767 1768 1769 1770 1771 1772 1773
    def make_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

K
Kaipeng Deng 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
    def make_pool2d_infershape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

    def make_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32')
            return (layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1)))

1793 1794 1795 1796 1797
    def make_adaptive_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
1798
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
1799 1800 1801
            return (pool)
            return (mask)
            return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
1802
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
1803 1804 1805 1806 1807 1808 1809 1810 1811
            return (pool)
            return (mask)

    def make_adaptive_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 224, 224], dtype='float32')
            return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
1812 1813
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
1814 1815 1816
            return (pool)
            return (mask)
            return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
1817
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
1818 1819
            return (pool)
            return (mask)
1820

1821 1822 1823 1824
    def make_lstm_unit(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x_t_data = self._get_data(
Y
yangyaming 已提交
1825 1826
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
1827
            prev_hidden_data = self._get_data(
Y
yangyaming 已提交
1828 1829
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
1830
            prev_cell_data = self._get_data(
Y
yangyaming 已提交
1831 1832
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
1833 1834
            return (layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
1835

1836 1837 1838 1839
    def make_softmax(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
1840
            hid = layers.fc(input=data, size=20)
1841
            return (layers.softmax(hid, axis=1))
D
dangqingqing 已提交
1842

1843 1844 1845 1846
    def make_space_to_depth(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
J
JiabinYang 已提交
1847
                name='data',
J
JiabinYang 已提交
1848 1849 1850
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
1851
            return (layers.space_to_depth(data, 3))
J
JiabinYang 已提交
1852

1853 1854 1855 1856 1857
    def make_lrn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
            return (layers.lrn(data))
1858

1859 1860 1861 1862
    def make_get_places(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            get_places(device_count=1)
X
xuezhong 已提交
1863

1864
    @prog_scope()
1865
    def make_nce(self):
Y
Yang Yu 已提交
1866 1867
        window_size = 5
        words = []
1868
        for i in range(window_size):
Y
Yang Yu 已提交
1869
            words.append(
1870
                self._get_data(
Y
Yang Yu 已提交
1871 1872 1873
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
1874
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1875 1876

        embs = []
1877
        for i in range(window_size):
Y
Yang Yu 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
1895
        avg_loss = layers.mean(loss)
1896
        return (avg_loss)
Y
Yang Yu 已提交
1897

1898 1899 1900 1901 1902 1903
    def make_multiplex(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
1904
            out = layers.multiplex(inputs=[x1, x2], index=index)
1905 1906 1907 1908 1909 1910 1911
            return (out)

    def make_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
1912 1913
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
1914 1915 1916
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

1917
            loss = layers.softmax_with_cross_entropy(x, y)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
            return (loss4)
1933 1934 1935 1936 1937 1938

    def make_smooth_l1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
1939
            loss = layers.smooth_l1(x, y)
1940
            return (loss)
1941

1942 1943 1944 1945
    def make_scatter(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
1946 1947 1948 1949
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
1950
            idx = self._get_data(
1951
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
1952
            updates = self._get_data(
1953 1954 1955 1956 1957
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
1958
            return (out)
Y
yangyaming 已提交
1959

1960 1961 1962 1963 1964 1965
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            return (one_hot_label)

1966 1967 1968 1969 1970
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1971 1972
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
1973 1974
                label=one_hot_label, epsilon=0.1, dtype="int32")
            return (smooth_label)
1975

1976 1977 1978 1979 1980 1981 1982
    def make_topk(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            return (values)
            return (indices)
J
jerrywgz 已提交
1983

1984 1985 1986 1987
    def make_resize_bilinear(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
1988
            output = layers.resize_bilinear(x, out_shape=[12, 12])
1989
            return (output)
K
Kaipeng Deng 已提交
1990 1991 1992 1993 1994 1995

    def make_resize_bilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
1996
            return (output)
1997

1998
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

2016 2017 2018
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
2019
            output = layers.resize_nearest(x, out_shape=[12, 12])
2020
            return (output)
K
Kaipeng Deng 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

    def make_resize_nearest_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
            return (output)

    def make_resize_trilinear(self):
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
            return (output)

    def make_resize_trilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
2058
            return (output)
2059

2060 2061 2062 2063
    def make_polygon_box_transform(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
2064
            output = layers.polygon_box_transform(input=x)
2065
            return (output)
2066

2067 2068 2069 2070
    def make_l2_normalize(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
2071
            output = layers.l2_normalize(x, axis=1)
2072
            return output
2073

2074 2075 2076 2077
    def make_maxout(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[8, 6, 6], dtype="float32")
Q
qingqing01 已提交
2078
            output = layers.maxout(x=data, groups=2)
2079 2080 2081 2082 2083 2084 2085
            return (output)

    def make_crop(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
2086
            output = layers.crop(x, shape=y)
2087 2088 2089 2090 2091
            return (output)

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
2092 2093
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
2094
            return (iou)
W
whs 已提交
2095

2096 2097 2098 2099
    def make_argsort(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
2100
            out, ids = layers.argsort(input=data, axis=1)
2101 2102 2103 2104 2105 2106 2107
            return (out)
            return (ids)

    def make_rank_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            label = self._get_data(
2108 2109 2110 2111
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
2112
            left = self._get_data(
2113 2114 2115 2116
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
2117
            right = self._get_data(
2118 2119 2120 2121 2122
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
2123
            return (out)
2124

2125 2126 2127 2128
    def make_shape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
B
Bai Yifan 已提交
2129
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
2130
            out = layers.shape(input)
2131
            return (out)
B
Bai Yifan 已提交
2132

2133 2134 2135 2136
    def make_pad2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
W
whs 已提交
2137
                name="input", shape=[3, 100, 100], dtype="float32")
2138
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
2139 2140 2141 2142 2143 2144
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
2145 2146 2147 2148 2149 2150
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
2151 2152
            return (out)
            return (out_1)
W
whs 已提交
2153

2154 2155 2156 2157
    def make_prelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
J
jerrywgz 已提交
2158 2159 2160 2161 2162 2163 2164
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
2165
            return (out)
J
jerrywgz 已提交
2166

2167 2168 2169 2170
    def make_brelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2171
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
2172
            return (out)
T
tensor-tang 已提交
2173

2174 2175 2176 2177
    def make_leaky_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2178
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
2179
            return (out)
T
tensor-tang 已提交
2180

2181 2182 2183 2184
    def make_soft_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2185
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
2186
            return (out)
T
tensor-tang 已提交
2187

2188 2189 2190 2191
    def make_sigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2192
            out = layers.sigmoid(input, name='sigmoid')
2193
            return (out)
T
tensor-tang 已提交
2194

2195 2196 2197 2198
    def make_logsigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2199
            out = layers.logsigmoid(input, name='logsigmoid')
2200
            return (out)
T
tensor-tang 已提交
2201

2202 2203 2204 2205
    def make_exp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2206
            out = layers.exp(input, name='exp')
2207
            return (out)
T
tensor-tang 已提交
2208

2209 2210 2211 2212
    def make_tanh(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2213
            out = layers.tanh(input, name='tanh')
2214
            return (out)
T
tensor-tang 已提交
2215

2216 2217 2218 2219
    def make_tanh_shrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2220
            out = layers.tanh_shrink(input, name='tanh_shrink')
2221
            return (out)
T
tensor-tang 已提交
2222

2223 2224 2225 2226
    def make_sqrt(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2227
            out = layers.sqrt(input, name='sqrt')
2228
            return (out)
T
tensor-tang 已提交
2229

2230 2231 2232 2233
    def make_abs(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2234
            out = layers.abs(input, name='abs')
2235
            return (out)
T
tensor-tang 已提交
2236

2237 2238 2239 2240
    def make_ceil(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2241
            out = layers.ceil(input, name='ceil')
2242
            return (out)
T
tensor-tang 已提交
2243

2244 2245 2246 2247
    def make_floor(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2248
            out = layers.floor(input, name='floor')
2249
            return (out)
T
tensor-tang 已提交
2250

2251 2252 2253 2254
    def make_cos(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2255
            out = layers.cos(input, name='cos')
2256
            return (out)
T
tensor-tang 已提交
2257

2258 2259 2260 2261
    def make_sin(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2262
            out = layers.sin(input, name='sin')
2263
            return (out)
T
tensor-tang 已提交
2264

2265 2266 2267 2268
    def make_round(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2269
            out = layers.round(input, name='round')
2270
            return (out)
T
tensor-tang 已提交
2271

2272 2273 2274 2275
    def make_reciprocal(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2276
            out = layers.reciprocal(input, name='reciprocal')
2277
            return (out)
T
tensor-tang 已提交
2278

2279 2280 2281 2282
    def make_square(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2283
            out = layers.square(input, name='square')
2284
            return (out)
T
tensor-tang 已提交
2285

2286 2287 2288 2289
    def make_softplus(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2290
            out = layers.softplus(input, name='softplus')
2291
            return (out)
T
tensor-tang 已提交
2292

2293 2294 2295 2296
    def make_softsign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2297
            out = layers.softsign(input, name='softsign')
2298
            return (out)
T
tensor-tang 已提交
2299

2300 2301 2302 2303 2304
    def make_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2305 2306
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
2307
            return (out)
2308

2309 2310 2311 2312 2313
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2314
            out = layers.bpr_loss(x, label)
2315
            return (out)
2316

2317 2318 2319 2320
    def make_expand(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
2321
            out = layers.expand(x, [1, 2])
2322
            return out
W
whs 已提交
2323

2324 2325 2326 2327 2328
    def make_uniform_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2329
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
2330
            return (out)
G
fix  
gongweibao 已提交
2331

2332 2333 2334
    def make_gaussian_random(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
G
fix  
gongweibao 已提交
2335
            out = layers.gaussian_random(shape=[20, 30])
2336
            return (out)
G
fix  
gongweibao 已提交
2337

2338 2339 2340 2341
    def make_sampling_id(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
G
fix  
gongweibao 已提交
2342 2343 2344 2345
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
2346 2347

            out = layers.sampling_id(x)
2348
            return (out)
G
fix  
gongweibao 已提交
2349

2350 2351 2352 2353 2354
    def make_gaussian_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2355 2356 2357

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
2358
            return (out)
G
fix  
gongweibao 已提交
2359

2360 2361 2362 2363 2364
    def make_sum(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2365 2366

            out = layers.sum(input)
2367
            return (out)
G
fix  
gongweibao 已提交
2368

2369
    def make_slice(self):
G
fix  
gongweibao 已提交
2370 2371 2372 2373
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

2374 2375 2376
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
G
fix  
gongweibao 已提交
2377 2378 2379
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
2380
            return out
G
merge  
gongweibao 已提交
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
    def make_scale_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False)

            out = layers.scale(input, scale=scale_var)
            return out

2396 2397 2398 2399
    def make_softshrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
2400
            out = layers.softshrink(input, alpha=0.3)
2401
            return (out)
G
fix  
gongweibao 已提交
2402

M
minqiyang 已提交
2403
    def make_iou_similarity(self):
2404 2405
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2406 2407
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
2408
            out = layers.iou_similarity(x, y, name='iou_similarity')
2409 2410 2411 2412 2413 2414 2415
            return (out)

    def make_grid_sampler(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
2416
            out = layers.grid_sampler(x, grid)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
            return (out)

    def make_bilinear_tensor_product_layer(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
            return (out)

    def make_batch_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)
            return (out)

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
    def make_batch_norm_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
            out = layers.batch_norm(data, momentum=momentum)
            return (out)

2449 2450 2451 2452
    def make_range(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            layers.range(0, 10, 2, 'int32')
2453 2454 2455 2456 2457 2458
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
            return y

    def make_spectral_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            return (out)

    def make_kldiv_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2475 2476 2477 2478 2479
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
2480
            target = self._get_data(
M
minqiyang 已提交
2481 2482 2483 2484
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            return (loss)

    def make_temporal_shift(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
            return (out)

    def make_shuffle_channel(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
            return (out)

M
minqiyang 已提交
2502
    def make_fsp_matrix(self):
2503 2504 2505 2506 2507 2508 2509
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            return (out)

M
minqiyang 已提交
2510 2511 2512 2513 2514 2515 2516
    def make_pixel_shuffle(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
            return (out)

R
ruri 已提交
2517 2518 2519 2520 2521 2522 2523 2524
    def make_mse_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
            return (out)

2525 2526 2527 2528 2529 2530 2531 2532
    def make_square_error_cost(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
            return (out)

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
2547 2548 2549
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
2550
            crf = layers.linear_chain_crf(
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
                input=emission, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=emission, param_attr=ParamAttr(name="crfw"))
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
            feature = layers.data(
                name='feature', shape=[max_len, 784], dtype='float32')
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
            crf = layers.linear_chain_crf(
                input=emission,
                label=label,
                length=length,
                param_attr=ParamAttr(name="crfw"))
2575
            crf_decode = layers.crf_decoding(
2576 2577 2578
                input=emission,
                length=length,
                param_attr=ParamAttr(name="crfw"))
2579 2580 2581 2582 2583
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
2584
                seq_length=length,
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
            return (output)

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2604
            # case 1
2605 2606 2607
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int64')
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
2618

W
whs 已提交
2619
    def test_affine_grid(self):
2620
        with self.static_graph():
W
whs 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
            out_shape = layers.data(
                name="out_shape", shape=[-1], dtype="float32")
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2632

W
wangchaochaohu 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides)
            return out

2644 2645 2646 2647 2648 2649 2650 2651
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64')
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64')
            return out

2652 2653 2654 2655 2656 2657 2658 2659
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            return (output)
2660

2661 2662 2663 2664 2665 2666 2667
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            return (layers.sequence_expand(x=x, y=y, ref_level=1))
2668

2669 2670 2671 2672 2673 2674
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            return (out)
2675

2676 2677 2678 2679
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2680
            length = layers.data(name='length', shape=[], dtype='int64')
2681
            return (layers.sequence_unpad(x=x, length=length))
2682

2683 2684 2685 2686 2687 2688 2689
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
            return (layers.sequence_softmax(seq))
2690

2691 2692 2693 2694 2695 2696
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
            return (out)
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            return (out)
W
whs 已提交
2720

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            return (out)
W
whs 已提交
2732

J
Jiawei Wang 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0)
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True)
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag')
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0)
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            return (out1)

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    def test_roi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6)
            return (output)

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
            return (output)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            return (output)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            return (out)

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4])

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
            return (out)

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            return (out)
2830

Z
zhoukunsheng 已提交
2831 2832 2833 2834 2835 2836 2837
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

2838
    def test_deformable_conv(self):
2839
        with self.static_graph():
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            mask = layers.data(
                name='mask',
                append_batch_size=False,
                shape=[2, 9, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)

    def test_deformable_conv2(self):
        with self.static_graph():
            input = fluid.data(
                name='input', shape=[None, 3, None, None], dtype="float32")
            offset = fluid.data(
                name='offset', shape=[None, 18, None, None], dtype="float32")
            mask = fluid.data(
                name='mask', shape=[None, 9, None, None], dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
2876 2877 2878 2879
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)
2880

2881 2882 2883 2884 2885 2886
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
            return (out)

C
cjt222 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
    def test_deform_roi_pooling(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1)
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1)
        return (out)

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
    def test_deformable_conv_v1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=None,
                num_filters=2,
                filter_size=3,
                padding=1,
                modulated=False)
            return (out)

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    def test_retinanet_target_assign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32')
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='float32')
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            return (layers.retinanet_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes,
                gt_labels, is_crowd, im_info, 10))

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    def test_sigmoid_focal_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32')
            fg_num = layers.data(
                name='fg_num',
                shape=[1],
                append_batch_size=False,
                dtype='int32')
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2., alpha=0.25)
            return (out)

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
    def test_retinanet_detection_output(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32')
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32')
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
                nms_eta=1.)
            return (nmsed_outs)

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64')
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64')
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32')
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length)
            return (output)

3060 3061 3062 3063 3064 3065 3066 3067 3068
    def test_edit_distance(self):
        with self.static_graph():
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1)
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1)
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32')
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32')
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32')

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
                        batch_first=batch_first)

Y
Yu Yang 已提交
3092 3093 3094

if __name__ == '__main__':
    unittest.main()