test_elementwise_mul_op.py 13.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import unittest
16

17
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from paddle.fluid import Program, program_guard
22
from paddle.fluid.framework import _test_eager_guard
23

24 25 26 27 28
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    skip_check_grad_ci,
    convert_float_to_uint16,
)
29 30


G
gongweibao 已提交
31
class ElementwiseMulOp(OpTest):
32 33 34
    def init_kernel_type(self):
        self.use_mkldnn = False

35 36
    def setUp(self):
        self.op_type = "elementwise_mul"
37
        self.dtype = np.float64
38 39 40 41 42 43
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

44
        self.inputs = {
45
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
46
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
47
        }
48 49
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
50 51

    def test_check_output(self):
52
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
53
        self.check_output(check_dygraph=(not self.use_mkldnn))
54 55

    def test_check_grad_normal(self):
56
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
57
        self.check_grad(['X', 'Y'], 'Out', check_dygraph=(not self.use_mkldnn))
58 59

    def test_check_grad_ingore_x(self):
60
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
61 62 63 64
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
65
            check_dygraph=(not self.use_mkldnn),
66
        )
67 68

    def test_check_grad_ingore_y(self):
69
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
70 71 72 73
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
74
            check_dygraph=(not self.use_mkldnn),
75
        )
76

77 78 79 80 81 82 83 84 85 86 87
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class TestElementwiseMulOp_ZeroDim1(ElementwiseMulOp):
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)


class TestElementwiseMulOp_ZeroDim2(ElementwiseMulOp):
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)


class TestElementwiseMulOp_ZeroDim3(ElementwiseMulOp):
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)


110 111 112 113 114 115 116 117 118 119 120 121
class TestBF16ElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.dtype = np.uint16

        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.out = np.multiply(self.x, self.y)

        self.axis = -1

        self.inputs = {
122 123 124 125 126 127
            'X': OpTest.np_dtype_to_fluid_dtype(
                convert_float_to_uint16(self.x)
            ),
            'Y': OpTest.np_dtype_to_fluid_dtype(
                convert_float_to_uint16(self.y)
            ),
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        }
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {'axis': self.axis, 'use_mkldnn': False}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


145
@skip_check_grad_ci(
146 147
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
148 149 150 151
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
152
            'X': np.random.rand(10, 3, 4).astype(np.float64),
153
            'Y': np.random.rand(1).astype(np.float64),
154 155
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
156
        self.init_kernel_type()
157 158


G
gongweibao 已提交
159
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
160 161 162
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
163 164
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
165 166
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
167
        self.init_kernel_type()
168 169


G
gongweibao 已提交
170
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
171
    def init_input_output(self):
172 173 174
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x * self.y.reshape(100, 1, 1)
175

176 177
    def init_axis(self):
        self.axis = 0
178 179


G
gongweibao 已提交
180
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
181 182 183
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
184
            'X': np.random.rand(2, 100, 3).astype(np.float64),
185
            'Y': np.random.rand(100).astype(np.float64),
186 187 188 189
        }

        self.attrs = {'axis': 1}
        self.outputs = {
190
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
191
        }
192
        self.init_kernel_type()
193 194


G
gongweibao 已提交
195
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
196 197 198
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
199
            'X': np.random.rand(2, 3, 100).astype(np.float64),
200
            'Y': np.random.rand(100).astype(np.float64),
201 202 203
        }

        self.outputs = {
204
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
205
        }
206
        self.init_kernel_type()
207 208


G
gongweibao 已提交
209
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
210 211 212
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
213
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
214
            'Y': np.random.rand(10, 12).astype(np.float64),
215 216 217 218
        }

        self.attrs = {'axis': 1}
        self.outputs = {
219
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
220
        }
221
        self.init_kernel_type()
222 223


224 225 226 227
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
228
            'X': np.random.rand(10, 2, 11).astype(np.float64),
229
            'Y': np.random.rand(10, 1, 11).astype(np.float64),
230 231
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
232
        self.init_kernel_type()
233 234 235 236 237 238


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
239
            'X': np.random.rand(10, 4, 2, 3).astype(np.float64),
240
            'Y': np.random.rand(10, 4, 1, 3).astype(np.float64),
241 242
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
243
        self.init_kernel_type()
244 245


246 247 248
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
W
Wu Yi 已提交
249 250 251 252 253
class TestElementwiseMulOpFp16(ElementwiseMulOp):
    def init_dtype(self):
        self.dtype = np.float16


254 255 256 257
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
258
            'X': np.random.rand(2, 3, 100).astype(np.float64),
259
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
260 261
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
262
        self.init_kernel_type()
263 264 265 266 267 268


class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
269
            'X': np.random.rand(30, 3, 1, 5).astype(np.float64),
270
            'Y': np.random.rand(30, 1, 4, 1).astype(np.float64),
271 272
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
273
        self.init_kernel_type()
274 275 276 277 278 279


class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
280
            'X': np.random.rand(10, 10).astype(np.float64),
281
            'Y': np.random.rand(2, 2, 10, 10).astype(np.float64),
282 283 284 285 286
        }

        self.attrs = {'axis': 2}

        self.outputs = {
287
            'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
288
        }
289
        self.init_kernel_type()
290 291


292
class TestElementwiseMulOpError(unittest.TestCase):
293 294 295
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_mul must be Variable.
296 297 298 299 300 301
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
            y1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
302 303 304 305 306 307 308 309 310
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)


311 312 313 314 315 316 317 318 319
class TestComplexElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
320
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
321 322 323 324 325 326 327 328
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
329 330 331 332 333 334
        self.x = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
335 336 337
        self.out = self.x * self.y

    def init_grad_input_output(self):
338 339 340
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
341 342 343 344 345 346 347
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
348 349 350 351 352 353
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
354 355

    def test_check_grad_ingore_x(self):
356 357 358 359 360 361 362
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
363 364

    def test_check_grad_ingore_y(self):
365 366 367 368 369 370 371
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
372 373


C
chentianyu03 已提交
374 375 376
class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
377 378 379
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chentianyu03 已提交
380 381 382
        self.out = self.x * self.y

    def init_grad_input_output(self):
383 384 385
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
C
chentianyu03 已提交
386 387 388 389
        self.grad_x = np.real(self.grad_out * np.conj(self.y))
        self.grad_y = self.grad_out * np.conj(self.x)


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
class TestElementwiseMulop(unittest.TestCase):
    def func_dygraph_mul(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray * tenor
        expect_out = np_a * np_b
        actual_out = np_a * tensor_b
        np.testing.assert_allclose(actual_out, expect_out)

        # normal case: tensor * nparray
        actual_out = tensor_a * np_b
        np.testing.assert_allclose(actual_out, expect_out)

        paddle.enable_static()

    def test_dygraph_mul(self):
        with _test_eager_guard():
            self.func_dygraph_mul()


416
if __name__ == '__main__':
417
    paddle.enable_static()
418
    unittest.main()