quantization_pass.py 131.2 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17

18 19 20 21
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
32
from ....framework import _get_paddle_place
33
from . import utils
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
    'AddQuantDequantForInferencePass',
48
]
W
WangZhen 已提交
49

50
_fake_quant_op_list = [
51 52 53 54
    'fake_quantize_abs_max',
    'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max',
    'fake_channel_wise_quantize_abs_max',
55 56 57
]

_fake_dequant_op_list = [
58 59
    'fake_dequantize_max_abs',
    'fake_channel_wise_dequantize_max_abs',
60 61
]

62
_fake_quant_dequant_op_list = [
63 64
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
65
    "fake_quantize_dequantize_abs_max",
66 67
]

68 69
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

70
_SCALE_DEFAULT_VALUE = 0.001
71 72


73
def _init_var_node(var_node, value, scope, place):
74 75 76 77 78
    assert isinstance(
        value, np.ndarray
    ), 'The type of value should be numpy array.'
    assert scope is not None, 'The scope cannot be set None.'
    assert place is not None, 'The place cannot be set None.'
79 80 81 82
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


83 84 85 86 87
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
88
    for var_name in utils._get_op_input_var_names(op_node):
89
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
90 91 92
        is_input_all_not_persistable = is_input_all_not_persistable and (
            not in_node.persistable()
        )
93 94 95
    return is_input_all_not_persistable


96 97 98 99 100 101 102 103 104 105 106 107 108 109
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


110
class QuantizationTransformPass(object):
111
    """
112 113
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
114
    """
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def __init__(
        self,
        scope=None,
        place=None,
        weight_bits=8,
        activation_bits=8,
        activation_quantize_type='abs_max',
        weight_quantize_type='abs_max',
        window_size=10000,
        moving_rate=0.9,
        skip_pattern=['skip_quant'],
        quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
        weight_quantize_func=None,
        act_quantize_func=None,
        weight_preprocess_func=None,
        act_preprocess_func=None,
        optimizer_func=None,
        executor=None,
        is_test=None,
    ):
136
        r"""
137
        Constructor.
138

W
WangZhen 已提交
139
        Args:
140
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
141 142
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
143 144
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
145
                where ``x`` is the index of the GPUs.
146
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
147
                the bias is not quantized.
148 149
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
150 151 152 153 154
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
155
            weight_quantize_type(str): quantization type for weights,
156 157 158
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
159 160
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
161
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
162
                will be presented in the name scope of an op. When the skip pattern is
163 164
                detected in an op's name scope, the corresponding op will not be quantized.
            quantizable_op_type(list[str]): List the type of ops that will be quantized.
165 166
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
194 195
                Default is None.

196

W
WangZhen 已提交
197 198
        Examples:
        .. code-block:: python
199 200 201 202
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
203
            from paddle.fluid.contrib.slim.graph import IrGraph
204 205
            from paddle.fluid import core

206
            graph = IrGraph(core.Graph(program.desc), for_test=False)
207
            place = fluid.CPUPlace()
208
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
209
            place)
210
            transform_pass.apply(graph)
W
WangZhen 已提交
211
        """
212
        self._scope = scope
213
        self._place = _get_paddle_place(place)
214 215
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
216
        self._skip_pattern = skip_pattern
217 218 219 220 221 222
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
223
        quant_type = [
224 225 226 227
            'abs_max',
            'channel_wise_abs_max',
            'range_abs_max',
            'moving_average_abs_max',
228
        ]
229 230 231
        assert (
            activation_quantize_type != 'channel_wise_abs_max'
        ), "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
232 233
        if activation_quantize_type not in quant_type:
            raise ValueError(
234
                "Unknown activation_quantize_type : '%s'. It can only be "
235 236 237
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(activation_quantize_type))
            )
W
WangZhen 已提交
238 239
        if weight_quantize_type not in quant_type:
            raise ValueError(
240
                "Unknown weight_quantize_type: '%s'. It can only be "
241
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
242 243
                "or 'moving_average_abs_max'." % (str(weight_quantize_type))
            )
W
WangZhen 已提交
244

245 246 247
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
248
        self._moving_rate = moving_rate
W
WangZhen 已提交
249

250 251
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
252
            assert op in utils._weight_supported_quantizable_op_type, (
253
                op + " is not supported for quantization."
254
            )
255 256
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
257
        ]
258
        self._is_test = is_test
259
        self._global_step = None
W
WangZhen 已提交
260

261 262 263
        self.create_var_map = {}
        self.create_op_map = {}

264
    def apply(self, graph):
265 266 267 268 269 270 271
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
272 273
        Returns:
            None
274
        """
275 276 277
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
278 279
        if self._is_test is None:
            self._is_test = graph.is_test()
W
WangZhen 已提交
280 281
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
282
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
283
        processed_vars = []
W
WangZhen 已提交
284

285
        def _quant_preprocess(op_node):
286 287
            user_skipped = False
            if isinstance(self._skip_pattern, list):
288 289 290 291
                user_skipped = op_node.op().has_attr("op_namescope") and any(
                    pattern in op_node.op().attr("op_namescope")
                    for pattern in self._skip_pattern
                )
292
            elif isinstance(self._skip_pattern, str):
293 294 295 296 297 298 299
                user_skipped = (
                    op_node.op().has_attr("op_namescope")
                    and op_node.op()
                    .attr("op_namescope")
                    .find(self._skip_pattern)
                    != -1
                )
300

301
            if user_skipped:
302
                op_node.op()._set_attr("skip_quant", True)
303
                op_node.op()._set_attr("with_quant_attr", True)
304

W
WangZhen 已提交
305
        def _transform_forward(graph, op):
306
            op.op()._set_attr("quantization_type", "qat_with_weight")
307
            op.op()._set_attr("with_quant_attr", True)
308 309
            inputs = op.inputs
            for var_node in inputs:
310 311
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
312 313 314
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
315 316 317
                    name = var_node.name()
                    if name in processed_vars:
                        continue
318 319 320
                    is_weight = (
                        True if var_node.name() in persistable_vars else False
                    )
321 322

                    # if var node is weight and weight_preprocess_func is not None,
323
                    # will insert weight preprocess func
324
                    # to preorocess weight before quantization
325 326
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
327 328 329
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
330 331 332 333 334 335 336 337
                            graph, self._weight_preprocess_func, var_node, op
                        )
                    elif (
                        not is_weight and self._act_preprocess_func is not None
                    ):
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op
                        )
338 339 340 341 342 343 344

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
345 346
                            graph, self._weight_quantize_func, var_node, op
                        )
347 348 349 350
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
351 352
                            graph, self._act_quantize_func, var_node, op
                        )
353 354 355
                        processed_vars.append(name)
                        continue

356 357 358
                    quant_bits = (
                        self._weight_bits
                        if var_node.name() in persistable_vars
359
                        else self._activation_bits
360 361 362 363
                    )
                    quant_type = (
                        self._weight_quantize_type
                        if is_weight
364
                        else self._activation_quantize_type
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
                    )
                    if (
                        quant_type == 'channel_wise_abs_max'
                    ):  # Weight quantization
                        quant_axis = (
                            1
                            if op.name() in utils._channelwise_quant_axis1_ops
                            else 0
                        )
                        (
                            quant_var_node,
                            scale_var_node,
                        ) = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis
                        )
380
                        dequant_var_node = self._insert_channel_dequant_op(
381 382 383 384 385 386
                            graph,
                            quant_var_node,
                            [scale_var_node],
                            [quant_bits],
                            quant_axis,
                        )
387 388
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
389 390
                            graph, var_node, name, quant_bits, quant_type
                        )
391
                        dequant_var_node = self._insert_dequant_op(
392 393
                            graph, quant_var_node, scale_var_node, quant_bits
                        )
394
                    dequantized_vars[name] = dequant_var_node
395
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
396 397 398

        def _transform_backward(graph, op):
            for var_node in op.inputs:
399 400
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
401 402
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
403
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
404

X
XGZhang 已提交
405 406 407 408 409 410 411 412 413 414
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

415
        if not self._is_test:
W
WangZhen 已提交
416
            self._create_global_step(graph)
417
        ops = graph.all_op_nodes()
418 419 420
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
421 422 423 424
            if (
                op.name() in self._quantizable_ops
                or op.name() in self._quantizable_grad_ops
            ):
425
                _quant_preprocess(op)
426 427
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
428 429
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
430 431 432 433 434
        with tqdm(
            total=len(ops),
            bar_format='Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
435 436 437 438 439
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
440 441
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
442
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
443
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
444
        graph.resolve_hazard()
445
        return graph
W
WangZhen 已提交
446

W
WangZhen 已提交
447
    def _create_global_step(self, graph):
448 449 450 451
        if (
            self._weight_quantize_type == 'range_abs_max'
            or self._activation_quantize_type == 'range_abs_max'
        ):
452
            counter_name = '@STEP_COUNTER@'
453
            for node in graph.all_var_nodes():
W
WangZhen 已提交
454
                if node.name() == counter_name:
455 456
                    self._global_step = node
            if self._global_step is None:
457
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
458 459 460
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
461 462 463 464 465 466 467 468
                    var_dtype=core.VarDesc.VarType.INT64,
                )
                _init_var_node(
                    global_step_in,
                    np.zeros([1], dtype='int64'),
                    self._scope,
                    self._place,
                )
W
WangZhen 已提交
469
                global_step_out = graph.create_var_node_from_desc(
470 471
                    global_step_in.var()
                )
472
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
473 474
                increment_op = graph.create_op_node(
                    op_type='increment',
475 476
                    attrs={
                        'step': 1.0,
477
                        'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
478
                    },
W
WangZhen 已提交
479
                    inputs={'X': global_step_in},
480 481
                    outputs={'Out': global_step_out},
                )
482 483 484
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
485

486
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
487 488 489 490
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
491 492 493
            return self._insert_quant_abs_max_op(
                graph, var_node, name, quant_bits
            )
W
WangZhen 已提交
494
        elif quant_type == 'range_abs_max':
495 496 497
            return self._insert_quant_range_abs_max_op(
                graph, var_node, name, quant_bits
            )
498
        elif quant_type == 'moving_average_abs_max':
499
            return self._insert_quant_moving_average_abs_max_op(
500 501
                graph, var_node, name, quant_bits
            )
W
WangZhen 已提交
502

503
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
504 505 506 507 508 509
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
510
            name=self._quantized_var_name(name),
511 512
            var_type=var_node.type(),
            shape=var_node.shape(),
513 514
            var_dtype=var_node.dtype(),
        )
515
        scale_name = self._quantized_scale_name(name)
516 517 518 519 520
        data_type = (
            'float64'
            if var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
521 522
        try:
            scale_value = np.array(
523 524
                self._scope.find_var(scale_name).get_tensor()
            )
525 526
        except:
            scale_value = np.zeros([1], dtype=data_type)
527
        scale_var_node = graph.create_persistable_node(
528
            name=scale_name,
529
            var_type=var_node.type(),
530
            shape=[1],
531 532
            var_dtype=var_node.dtype(),
        )
533 534
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)

W
WangZhen 已提交
535 536
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
537 538
            attrs={
                'bit_length': quant_bits,
539
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
540
            },
W
WangZhen 已提交
541
            inputs={'X': var_node},
542 543
            outputs={'Out': quant_var_node, 'OutScale': scale_var_node},
        )
544 545 546
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
547 548
        return quant_var_node, scale_var_node

549
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
550 551 552 553 554 555
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
556
            name=self._quantized_var_name(name),
557 558
            var_type=var_node.type(),
            shape=var_node.shape(),
559 560
            var_dtype=var_node.dtype(),
        )
W
WangZhen 已提交
561

562
        scale_name = self._quantized_scale_name(name)
563 564 565 566 567
        data_type = (
            'float64'
            if var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
568 569
        try:
            scale_value = np.array(
570 571
                self._scope.find_var(scale_name).get_tensor()
            )
572 573
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
574
        scale_in_node = graph.create_persistable_node(
575
            name=scale_name,
W
WangZhen 已提交
576 577
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
578 579
            var_dtype=var_node.dtype(),
        )
580
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
W
WangZhen 已提交
581 582 583 584 585

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

586
        if not self._is_test:
W
WangZhen 已提交
587
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
588
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
589 590
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
591
                shape=[self._window_size],
592 593 594 595 596 597 598 599 600 601 602 603 604
                var_dtype=var_node.dtype(),
            )
            data_type = (
                'float64'
                if var_node.dtype() == core.VarDesc.VarType.FP64
                else 'float32'
            )
            _init_var_node(
                scales_node,
                np.zeros([self._window_size], dtype=data_type),
                self._scope,
                self._place,
            )
605

606
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
607 608
            outputs['OutScales'] = scales_node
        attrs = {
609
            'window_size': self._window_size,
W
WangZhen 已提交
610
            'bit_length': quant_bits,
611
            'is_test': self._is_test,
612
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
W
WangZhen 已提交
613 614 615 616 617
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
618 619
            outputs=outputs,
        )
W
WangZhen 已提交
620

621 622 623 624
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
625

626 627 628
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
629 630 631

        return quant_var_node, scale_out_node

632 633 634 635
    def _insert_quant_moving_average_abs_max_op(
        self, graph, var_node, name, quant_bits
    ):
        """Insert fake_quantize_moving_average_abs_max"""
636
        quant_var_node = graph.create_var_node(
637
            name=self._quantized_var_name(name),
638 639
            var_type=var_node.type(),
            shape=var_node.shape(),
640 641
            var_dtype=var_node.dtype(),
        )
642
        scale_name = self._quantized_scale_name(name)
643 644 645 646 647
        data_type = (
            'float64'
            if var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
648 649
        try:
            scale_value = np.array(
650 651
                self._scope.find_var(scale_name).get_tensor()
            )
652 653
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
654
        scale_in_node = graph.create_persistable_node(
655
            name=scale_name,
656 657
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
658 659
            var_dtype=var_node.dtype(),
        )
660
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
661 662 663 664 665 666 667 668 669

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
670 671 672 673 674 675 676 677 678 679 680 681 682
                shape=[1],
            )
            data_type = (
                'float64'
                if var_node.dtype() == core.VarDesc.VarType.FP64
                else 'float32'
            )
            _init_var_node(
                state_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
683 684 685 686
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
687 688 689 690 691 692 693 694
                shape=[1],
            )
            _init_var_node(
                accum_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
695
            state_out_node = graph.create_var_node_from_desc(
696 697
                state_in_node.var()
            )
698
            accum_out_node = graph.create_var_node_from_desc(
699 700
                accum_in_node.var()
            )
701 702 703 704 705 706 707 708 709 710

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
711
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
712 713 714 715 716 717
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
718 719
            outputs=outs,
        )
720 721 722 723 724 725 726 727 728 729 730 731 732 733

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

734 735 736
    def _insert_channel_quant_op(
        self, graph, var_node, name, quant_bits, quant_axis
    ):
737 738 739 740 741 742
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
743
            name=self._quantized_var_name(name),
744 745
            var_type=var_node.type(),
            shape=var_node.shape(),
746 747
            var_dtype=var_node.dtype(),
        )
748
        scale_name = self._quantized_scale_name(name)
749 750 751 752 753
        data_type = (
            'float64'
            if var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
754 755
        try:
            scale_value = np.array(
756 757
                self._scope.find_var(scale_name).get_tensor()
            )
758
        except:
759 760 761
            scale_value = np.zeros(
                [var_node.shape()[quant_axis]], dtype=data_type
            )
762
        scale_var_node = graph.create_persistable_node(
763
            name=self._quantized_scale_name(name),
764
            var_type=var_node.type(),
765
            shape=[var_node.shape()[quant_axis]],
766 767
            var_dtype=var_node.dtype(),
        )
768
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)
769 770 771 772
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
773
                'quant_axis': quant_axis,
774
                'is_test': self._is_test,
775
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
776 777
            },
            inputs={'X': var_node},
778 779
            outputs={'Out': quant_var_node, 'OutScale': scale_var_node},
        )
780 781 782 783 784
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
785 786 787 788 789 790 791 792
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
793 794
            var_type=var_node.type(),
            shape=var_node.shape(),
795 796
            var_dtype=var_node.dtype(),
        )
W
WangZhen 已提交
797 798 799
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
800 801
            attrs={
                'max_range': float(max_range),
802
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
803
            },
804 805 806
            inputs={'X': var_node, 'Scale': scale_var_node},
            outputs={'Out': dequant_var_node},
        )
807 808 809
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
810 811
        return dequant_var_node

812 813 814
    def _insert_channel_dequant_op(
        self, graph, var_node, scale_var_nodes, quant_bits, quant_axis
    ):
815 816 817 818 819 820 821 822 823
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
824 825
            var_dtype=var_node.dtype(),
        )
826 827 828 829
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
830
                'quant_axis': quant_axis,
831
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
832
            },
833 834 835
            inputs={'X': var_node, 'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node},
        )
836 837 838 839 840 841
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
870
        copy op_node in source_graph to graph. And will run recursively
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
922 923 924 925 926
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32',
                )
927
                out_node = func(in_node)
928
                graph.out_node_mapping_table[out_node.name] = var_node.name()
929 930 931
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
932 933 934
                    assert (
                        self._optimizer
                    ), "optimizer_func must be set when graph is test graph"
935 936 937 938 939 940
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

941 942 943 944 945 946 947 948 949
        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test
        )
        in_node = tmp_graph._find_node_by_name(
            tmp_graph.all_var_nodes(), in_node.name
        )
        out_node = tmp_graph._find_node_by_name(
            tmp_graph.all_var_nodes(), out_node.name
        )
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

968 969 970 971 972 973
        target_in_node = graph._find_node_by_name(
            graph.all_var_nodes(), in_node.name()
        )
        target_out_node = graph._find_node_by_name(
            graph.all_var_nodes(), out_node.name()
        )
974 975 976 977 978 979 980 981 982
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
983 984 985
            op_out_grad = graph._find_node_by_name(
                graph.all_var_nodes(), op_out.name() + "@GRAD"
            )
986 987 988
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
989 990
                graph.all_var_nodes(), target_out_node.name() + "@GRAD"
            )
991
            in_node_grad = graph._find_node_by_name(
992 993
                graph.all_var_nodes(), target_in_node.name() + "@GRAD"
            )
994 995 996 997 998 999 1000 1001 1002 1003 1004
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
1005 1006 1007
                graph.update_output_link(
                    op_grad_out, target_out_grad_node, op_grad
                )
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1043
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1044
        """
H
handiz 已提交
1045
        return "%s@scale" % (var_name)
W
WangZhen 已提交
1046

1047
    def _is_skip_quant(self, graph, op_node):
1048 1049 1050 1051
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
1052 1053 1054
        if op_node.op().has_attr("skip_quant") and op_node.op().attr(
            "skip_quant"
        ):
1055 1056 1057
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
1058 1059 1060 1061
        if op_node.name() in [
            "mul",
            "matmul",
        ] and _is_input_all_not_persistable(graph, op_node):
1062
            is_skip = True
1063 1064 1065 1066
        if (
            op_node.op().has_attr("quantization_type")
            and op_node.op().attr("quantization_type") == "qat_without_weight"
        ):
1067
            is_skip = True
1068 1069
        return is_skip

W
WangZhen 已提交
1070 1071

class QuantizationFreezePass(object):
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    def __init__(
        self,
        scope,
        place,
        bias_correction=False,
        weight_bits=8,
        activation_bits=8,
        round_type='round',
        weight_quantize_type='abs_max',
        quantizable_op_type=None,
    ):
1083 1084
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1085
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1086
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1087 1088
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1089 1090 1091

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1092 1093
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1094 1095
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1096 1097
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
1098
            round_type(str, optional): The method of converting the quantized weights
1099 1100 1101
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
1102 1103
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
1104
                since weights are fixed once the model is well trained.
1105 1106
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1107
        """
1108 1109
        assert scope is not None, 'The scope cannot be set None.'
        assert place is not None, 'The place cannot be set None.'
W
WangZhen 已提交
1110
        self._scope = scope
X
XGZhang 已提交
1111
        self._bias_correction = bias_correction
1112
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1113 1114
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
1115
        self._round_type = round_type
W
WangZhen 已提交
1116
        self._weight_quantize_type = weight_quantize_type
1117 1118
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1119 1120
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1121
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1122 1123

    def apply(self, graph):
1124 1125 1126 1127 1128
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1129 1130
        Returns:
            None
1131
        """
1132
        # Get input scales in fake quant op and process weights
1133 1134
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1135 1136 1137
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1138
                input_arg_name = op_node.input('X')[0]
1139 1140 1141
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
1142 1143
                            input_arg_name
                        ]
1144 1145
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1146 1147
                        op_node.outputs, op_node.output('OutScale')[0]
                    )
1148 1149 1150 1151 1152
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
1153 1154
                        1,
                        2,
1155 1156 1157
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
1158 1159 1160 1161
                    if (
                        scale_v.size == 1
                        and self._weight_quantize_type == 'abs_max'
                    ):
1162
                        scale_v = scale_v[0]
W
WangZhen 已提交
1163
                    else:
1164
                        scale_v = scale_v.tolist()
1165
                    self._quant_var_scale_map[input_arg_name] = scale_v
1166
                    # Quantize weight and restore
1167
                    if self._round_type == 'round':
1168
                        param_v = self._load_var(input_arg_name)
1169
                        if any(
1170 1171 1172
                            _check_grandchild_op_node(op_node, op)
                            for op in utils._channelwise_quant_axis1_ops
                        ):
1173 1174 1175
                            quant_axis = 1
                        else:
                            quant_axis = 0
1176
                        quantized_param_v = utils.quant_tensor(
1177 1178 1179 1180 1181
                            param_v.copy(),
                            scale_v,
                            quant_axis,
                            self._weight_bits,
                        )
1182
                        quantized_param_v = np.round(quantized_param_v)
1183
                        # Weight bias correction
1184
                        if self._bias_correction == True:
1185 1186 1187 1188 1189
                            quantized_param_v = utils.bias_correction_w(
                                param_v,
                                quantized_param_v,
                                scale_v,
                                quant_axis,
1190 1191
                                weight_bits=self._weight_bits,
                            )
1192
                            quantized_param_v = np.round(quantized_param_v)
1193
                        self._restore_var(input_arg_name, quantized_param_v)
1194
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1195

1196
        # Remove all fake dequant op
1197
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1198 1199 1200 1201 1202
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1203
        # Insert post dequant op
1204
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1205
        for op_node in ops:
1206
            op_node_desc = op_node.op()
1207 1208 1209 1210
            if (
                op_node_desc.has_attr("quantization_type")
                and op_node_desc.attr("quantization_type") == "qat_with_weight"
            ):
1211
                if self._weight_quantize_type == 'channel_wise_abs_max':
1212 1213 1214 1215 1216
                    quant_axis = (
                        1
                        if op_node.name() in utils._channelwise_quant_axis1_ops
                        else 0
                    )
1217
                    self._insert_post_channel_dequant_op(
1218 1219
                        graph, op_node, quant_axis
                    )
1220 1221
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1222

1223
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1224 1225
        for op_node in ops:
            for var_node in op_node.inputs:
1226 1227 1228
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1229 1230 1231 1232
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1233
        graph.resolve_hazard()
1234
        return graph
W
WangZhen 已提交
1235 1236

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1237 1238
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1239 1240
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1241
        else:
1242
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
1243 1244
                v.node
            ]
W
WangZhen 已提交
1245
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1246

1247
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1248 1249 1250
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1251 1252 1253 1254 1255
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1256 1257 1258
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1259
            scale_v = self._quant_var_scale_map[original_var_name]
1260 1261
            if original_var_name in persistable_vars:
                assert isinstance(
1262 1263 1264 1265
                    scale_v, list
                ), 'The scale of parameter %s is not a list.' % (
                    original_var_name
                )
1266 1267 1268
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1269
                scale_var_node = self._quant_var_scale_map[original_var_name]
1270

1271
        if len(op_node.output_arg_names()) != 1:
1272 1273 1274 1275
            raise ValueError(
                "Only support one output, but op %s has"
                " more than one output." % (op_node.name())
            )
1276

1277
        output_var_node = graph._find_node_by_name(
1278 1279
            op_node.outputs, op_node.output_arg_names()[0]
        )
1280 1281 1282 1283
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
            var_dtype=output_var_node.dtype(),
        )
        data_type = (
            'float64'
            if output_var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
        _init_var_node(
            weight_scale_node,
            channel_scale.astype(data_type),
            self._scope,
            self._place,
        )
1297 1298 1299 1300
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
1301 1302
            var_dtype=output_var_node.dtype(),
        )
X
XGZhang 已提交
1303 1304 1305
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1306 1307
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1308 1309 1310 1311
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1312
                'quant_axis': quant_axis,
1313
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
1314
                'x_num_col_dims': x_num_col_dims,
1315 1316 1317
            },
            inputs={
                'X': output_var_node,
1318
                'Scales': [weight_scale_node, scale_var_node],
1319
            },
1320 1321
            outputs={'Out': dequant_var_node},
        )
1322 1323 1324 1325
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1326
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1327 1328
        return dequant_var_node

W
WangZhen 已提交
1329
    def _insert_post_dequant_op(self, graph, op_node):
1330
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1331 1332 1333
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1334
        for var_node in op_node.inputs:
W
WangZhen 已提交
1335
            name = var_node.name()
1336 1337 1338 1339 1340
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1341
                new_in.clear_outputs()
W
WangZhen 已提交
1342 1343
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1344
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1345 1346
            if original_var_name in persistable_vars:
                assert self._is_float(
1347 1348 1349 1350
                    scale_v
                ), 'The scale of parameter %s is not a float.' % (
                    original_var_name
                )
X
XGZhang 已提交
1351
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1352
                max_range *= param_range / scale_v
W
WangZhen 已提交
1353
            else:
1354
                max_range *= act_range
1355
                assert isinstance(scale_v, IrNode)
1356
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1357

1358
        if len(op_node.output_arg_names()) != 1:
1359 1360 1361 1362
            raise ValueError(
                "Only support one output, but op %s has"
                " more than one output." % (op_node.name())
            )
W
WangZhen 已提交
1363

1364
        output_var_node = graph._find_node_by_name(
1365 1366
            op_node.outputs, op_node.output_arg_names()[0]
        )
W
WangZhen 已提交
1367 1368
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1369 1370
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
1371 1372
            var_dtype=output_var_node.dtype(),
        )
W
WangZhen 已提交
1373 1374
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1375 1376
            attrs={
                'max_range': float(max_range),
1377
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
1378
            },
1379 1380 1381
            inputs={'X': output_var_node, 'Scale': scale_var_node},
            outputs={'Out': dequant_var_node},
        )
W
WangZhen 已提交
1382 1383 1384
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1385
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1386 1387 1388 1389 1390
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1391 1392 1393
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1394 1395 1396

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1397
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1398 1399 1400 1401 1402 1403
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1404 1405 1406
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
1407 1408 1409 1410
            for n in filter(
                lambda node: node.node not in all_used_vars,
                graph.all_var_nodes(),
            )
1411
        }
W
WangZhen 已提交
1412 1413 1414 1415 1416 1417 1418
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
1419
            return var_name[: -len('.quantized.dequantized')]
W
WangZhen 已提交
1420
        if var_name.endswith('.quantized'):
1421
            return var_name[: -len('.quantized')]
W
WangZhen 已提交
1422
        if var_name.endswith('.dequantized'):
1423
            return var_name[: -len('.dequantized')]
H
handiz 已提交
1424
        if var_name.endswith('@scale'):
1425
            return var_name[: -len('@scale')]
W
WangZhen 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1435
    def _is_float(self, v):
1436 1437 1438
        return (
            isinstance(v, float)
            or isinstance(v, np.float32)
W
WangZhen 已提交
1439
            or isinstance(v, np.float64)
1440
        )
W
WangZhen 已提交
1441

1442 1443

class ConvertToInt8Pass(object):
1444
    def __init__(self, scope, place, quantizable_op_type=None):
1445 1446 1447 1448 1449
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1450 1451 1452
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1453 1454
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1455
        """
1456 1457
        assert scope is not None, 'The scope cannot be set None.'
        assert place is not None, 'The place cannot be set None.'
1458
        self._scope = scope
1459
        self._place = _get_paddle_place(place)
1460 1461

    def apply(self, graph):
1462
        """
T
tianshuo78520a 已提交
1463 1464
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1465 1466 1467

        Args:
            graph(IrGraph): the applied graph.
1468 1469
        Returns:
            None
1470
        """
1471 1472
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1473 1474
        input_map = {}
        for op_node in ops:
1475 1476 1477 1478
            if (
                op_node.op().has_attr("quantization_type")
                and op_node.op().attr("quantization_type") == "qat_with_weight"
            ):
1479 1480 1481 1482
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1483
                            int8_var_node = self._convert_to_int8(
1484 1485
                                graph, var_node
                            )
1486
                            input_map[name] = int8_var_node
1487 1488 1489
                        graph.update_input_link(
                            var_node, input_map[name], op_node
                        )
1490 1491 1492

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1493
        graph.resolve_hazard()
1494 1495 1496 1497
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1498
        int8_var_node = graph.create_persistable_node(
1499
            name=int8_var_node_name,
1500 1501
            var_type=var_node.type(),
            shape=var_node.shape(),
1502 1503
            var_dtype=core.VarDesc.VarType.INT8,
        )
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1518
        ops = graph.all_op_nodes()
1519 1520 1521 1522 1523 1524
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1525 1526 1527
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
1528 1529 1530 1531
            for n in filter(
                lambda node: node.node not in all_used_vars,
                graph.all_var_nodes(),
            )
1532
        }
1533 1534 1535 1536 1537
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1538
        """
T
tianshuo78520a 已提交
1539
        This pass is used to convert the frozen graph for paddle-mobile execution.
1540
        """
1541 1542
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1543 1544

    def apply(self, graph):
1545 1546 1547 1548 1549 1550 1551
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1552 1553
        Returns:
            None
1554
        """
1555
        ops = graph.all_op_nodes()
1556 1557 1558
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1559
                op_node.set_type('quantize')
1560 1561 1562 1563 1564 1565 1566
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1567
                op_node.set_type('dequantize')
1568 1569 1570 1571 1572 1573
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1574
        graph.resolve_hazard()
1575
        return graph
1576 1577


1578
class OutScaleForTrainingPass(object):
1579 1580 1581 1582 1583 1584 1585 1586
    def __init__(
        self,
        scope=None,
        place=None,
        moving_rate=0.9,
        is_test=None,
        scale_dict=None,
    ):
1587 1588 1589 1590 1591 1592
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1593 1594 1595
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1596 1597 1598
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1599
        self._place = _get_paddle_place(place)
1600
        self._moving_rate = moving_rate
1601
        self._is_test = is_test
1602
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1603
        self._scale_dict = scale_dict
1604 1605 1606 1607 1608 1609 1610 1611 1612

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1613 1614 1615
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
1616 1617
        if self._is_test is None:
            self._is_test = graph.is_test()
1618 1619 1620 1621
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1622 1623 1624 1625 1626
        with tqdm(
            total=len(target_ops),
            bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
1627 1628
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
1629 1630 1631 1632 1633 1634 1635
                    in_node = graph._find_node_by_name(
                        op.outputs, output_var_name
                    )
                    if in_node.dtype() not in [
                        core.VarDesc.VarType.FP64,
                        core.VarDesc.VarType.FP32,
                    ]:
1636
                        continue
1637

1638 1639 1640 1641 1642
                    data_type = (
                        'float64'
                        if in_node.dtype() == core.VarDesc.VarType.FP64
                        else 'float32'
                    )
1643
                    try:
1644
                        graph._find_node_by_name(
1645
                            graph.all_var_nodes(),
1646 1647
                            self._scale_name(in_node.name()),
                        )
1648
                        continue
1649 1650 1651 1652 1653
                    except:
                        scale_node = graph.create_persistable_node(
                            name=self._scale_name(in_node.name()),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            shape=[1],
1654 1655
                            var_dtype=in_node.dtype(),
                        )
1656 1657 1658
                        if self._scale_dict is not None:
                            try:
                                scale_value = np.array(
1659 1660
                                    [self._scale_dict[in_node.name()]]
                                )
1661 1662 1663 1664
                            except:
                                scale_value = np.ones([1], dtype=data_type)
                        else:
                            scale_value = np.ones([1], dtype=data_type)
1665 1666 1667
                    _init_var_node(
                        scale_node, scale_value, self._scope, self._place
                    )
1668

1669 1670 1671 1672 1673 1674 1675
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
1676 1677 1678 1679 1680 1681 1682 1683
                            shape=[1],
                        )
                        _init_var_node(
                            state_in_node,
                            np.ones([1], dtype=data_type),
                            self._scope,
                            self._place,
                        )
1684 1685 1686 1687
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
1688 1689 1690 1691 1692 1693 1694 1695
                            shape=[1],
                        )
                        _init_var_node(
                            accum_in_node,
                            np.ones([1], dtype=data_type),
                            self._scope,
                            self._place,
                        )
1696
                        state_out_node = graph.create_var_node_from_desc(
1697 1698
                            state_in_node.var()
                        )
1699
                        accum_out_node = graph.create_var_node_from_desc(
1700 1701
                            accum_in_node.var()
                        )
1702 1703 1704 1705 1706 1707 1708 1709 1710

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
1711
                        'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
1712 1713 1714 1715 1716
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
1717 1718
                        outputs=outs,
                    )
C
ceci3 已提交
1719 1720 1721 1722 1723

                    next_op_node = None
                    if len(in_node.outputs) > 0:
                        next_op_node = in_node.outputs[0]

1724 1725
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
C
ceci3 已提交
1726 1727 1728
                    if next_op_node:
                        graph.link_to(scale_node, next_op_node)

1729 1730 1731 1732 1733 1734
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1735 1736 1737 1738 1739 1740
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1741
        return "%s@scale" % (var_name)
1742 1743


1744
class OutScaleForInferencePass(object):
1745 1746 1747 1748 1749 1750 1751 1752 1753
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1754
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1755 1756 1757 1758 1759 1760 1761 1762 1763

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1764 1765 1766
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
1767 1768 1769
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1770
                var_names = utils._get_op_output_var_names(op_node)
1771
                for var_name in var_names:
1772 1773 1774 1775 1776 1777 1778
                    in_node = graph._find_node_by_name(
                        op_node.outputs, var_name
                    )
                    if in_node.dtype() not in [
                        core.VarDesc.VarType.FP64,
                        core.VarDesc.VarType.FP32,
                    ]:
1779 1780
                        continue

1781
                    scale_name = self._scale_name(var_name)
1782
                    scale_var = self._scope.find_var(scale_name)
1783 1784 1785 1786 1787
                    assert (
                        scale_var is not None
                    ), "Can not find {} variable in the scope".format(
                        scale_name
                    )
1788 1789 1790 1791
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1792

1793
                    argname_index = utils._get_output_name_index(
1794 1795 1796
                        op_node, var_name
                    )
                    assert argname_index is not None, (
1797
                        var_name + " is not the output of the op"
1798 1799 1800 1801 1802
                    )
                    op_node.op()._set_attr(
                        argname_index[0] + str(argname_index[1]) + "_threshold",
                        float(scale_value),
                    )
1803
                    op_node.op()._set_attr("with_quant_attr", True)
1804 1805 1806 1807 1808 1809 1810
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1811
        return "%s@scale" % (var_name)
1812 1813 1814


class AddQuantDequantPass(object):
1815
    """
1816
    Quantize the ops that do not have weights, and add quant_dequant op for the
1817 1818
    quantized ops's inputs.
    """
1819

1820 1821 1822
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    def __init__(
        self,
        scope=None,
        place=None,
        moving_rate=0.9,
        quant_bits=8,
        skip_pattern=["skip_quant"],
        quantizable_op_type=["elementwise_add", "pool2d"],
        is_full_quantized=False,
        is_test=None,
        scale_dict=None,
    ):
1835
        """
1836
        Constructor.
1837 1838 1839

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1840 1841 1842
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1843
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
1844 1845 1846 1847 1848 1849
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
1850 1851 1852
            quantizable_op_type(list[str], optional): List the type of ops that will be
                quantized. Default is ["elementwise_add", "pool2d"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply
1853
                quantization to all supported quantizable op type. If set is_full_quantized
1854
                as False, only apply quantization to the op type according to the input
1855
                quantizable_op_type.
1856 1857
        """
        self._scope = scope
1858
        self._place = _get_paddle_place(place)
1859 1860
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
1861
        self._is_test = is_test
1862
        self._skip_pattern = skip_pattern
1863
        self._scale_dict = scale_dict
1864 1865

        if is_full_quantized:
1866
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1867 1868 1869
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1870
                assert op_type in utils._act_supported_quantizable_op_type, (
1871
                    op_type + " is not supported for quantization."
1872
                )
1873 1874 1875 1876
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1877 1878
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
1879 1880 1881

    def apply(self, graph):
        """
1882 1883
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1884

1885 1886
        Args:
            graph(IrGraph): the target graph.
1887 1888
        Returns:
            None
1889
        """
1890 1891 1892
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
1893 1894
        if self._is_test is None:
            self._is_test = graph.is_test()
1895 1896
        dequantized_vars_map = collections.OrderedDict()

1897 1898
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1899 1900 1901 1902 1903
        with tqdm(
            total=len(all_op_nodes),
            bar_format='Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
1904 1905 1906 1907
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
1908 1909 1910 1911
                        is_skip = op_node.op().has_attr("op_namescope") and any(
                            pattern in op_node.op().attr("op_namescope")
                            for pattern in self._skip_pattern
                        )
1912
                    elif isinstance(self._skip_pattern, str):
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
                        is_skip = (
                            op_node.op().has_attr("op_namescope")
                            and op_node.op()
                            .attr("op_namescope")
                            .find(self._skip_pattern)
                            != -1
                        )
                    is_quantized = (
                        op_node.op().has_attr("quantization_type")
                        and op_node.op().attr("quantization_type")
                        == "qat_with_weight"
                    )
                    if (
                        is_skip
                        or is_quantized
                        or (not _is_input_all_not_persistable(graph, op_node))
                    ):
1930
                        continue
1931

1932 1933 1934
                    op_node.op()._set_attr(
                        "quantization_type", "qat_without_weight"
                    )
1935 1936 1937 1938 1939
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
1940 1941
                            op_node.inputs, arg_name
                        )
1942 1943 1944
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
1945 1946 1947 1948 1949 1950
                            (
                                quant_var_node,
                                _,
                            ) = self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits
                            )
1951
                            dequantized_vars_map[arg_name] = quant_var_node
1952 1953 1954
                        graph.update_input_link(
                            in_node, quant_var_node, op_node
                        )
1955
            t.update()
1956

1957 1958
        # Backward stage, update input link
        for op_node in all_op_nodes:
1959
            if op_node.name() in self._quantizable_grad_op_type:
1960 1961
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1962
                        in_node = graph._find_node_by_name(
1963 1964
                            op_node.inputs, input_name
                        )
1965
                        dequant_var_node = dequantized_vars_map[input_name]
1966 1967 1968
                        graph.update_input_link(
                            in_node, dequant_var_node, op_node
                        )
1969

1970 1971 1972
        graph.resolve_hazard()
        return graph

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    def _inser_quant_dequant_moving_average_abs_max_op(
        self, graph, var_node, quant_bits
    ):
        """Insert fake_quantize_dequantize_moving_average_abs_max op."""
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype(),
        )
1983
        scale_name = "{}.quant_dequant@scale".format(var_node.name())
1984 1985 1986 1987 1988
        data_type = (
            'float64'
            if var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
1989
        try:
1990 1991 1992 1993 1994 1995 1996
            if (
                self._scale_dict is not None
                and var_node.name() in self._scale_dict.keys()
            ):
                scale_value = np.array(
                    [self._scale_dict[var_node.name()]], dtype=data_type
                )
1997 1998 1999
            else:
                scale_value = np.array(
                    self._scope.find_var(scale_name).get_tensor(),
2000 2001
                    dtype=data_type,
                )
2002 2003 2004
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)

2005
        scale_in_node = graph.create_persistable_node(
H
handiz 已提交
2006
            name="{}.quant_dequant@scale".format(var_node.name()),
2007 2008
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
2009 2010
            var_dtype=var_node.dtype(),
        )
2011

2012
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
2013 2014 2015 2016 2017 2018 2019 2020
        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
                shape=[1],
            )
            data_type = (
                'float64'
                if var_node.dtype() == core.VarDesc.VarType.FP64
                else 'float32'
            )
            _init_var_node(
                state_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2034 2035 2036 2037
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2038 2039 2040 2041 2042 2043 2044 2045
                shape=[1],
            )
            _init_var_node(
                accum_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2046
            state_out_node = graph.create_var_node_from_desc(
2047 2048
                state_in_node.var()
            )
2049
            accum_out_node = graph.create_var_node_from_desc(
2050 2051
                accum_in_node.var()
            )
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
2062
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
2063 2064 2065 2066 2067 2068
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
2069 2070
            outputs=outs,
        )
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098


class InsertQuantizeLinear(object):
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
2099
        moving_rate(float): the rate for 'moving average' method.
2100
        is_test(bool, optional): Whether quantization with training or not. Default is True.
2101
        scale_dict(dict, optional): calibration ranges of tensors output.
2102 2103
    """

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
    def __init__(
        self,
        place,
        scope,
        quant_bits=8,
        quant_axis=-1,
        channel_wise=False,
        moving_rate=0.9,
        is_test=True,
        scale_dict=None,
    ):
2115 2116 2117 2118 2119 2120
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test
2121
        self._moving_rate = moving_rate
2122
        self._scale_dict = scale_dict
2123

2124
    def insert_quant_op(self, graph, var_node, var_name=None):
2125
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
2126 2127 2128 2129 2130
        var_name = var_node.name() if not var_name else var_name
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
2131 2132 2133 2134 2135 2136 2137
            var_dtype=var_node.dtype(),
        )
        data_type = (
            'float64'
            if var_node.dtype() == core.VarDesc.VarType.FP64
            else 'float32'
        )
2138
        scale_name = self._quantized_scale_name(var_name)
2139 2140 2141
        if self.channel_wise:
            scale_var_shape = var_node.shape()[self.quant_axis]
            scale_var_type = core.VarDesc.VarType.LOD_TENSOR
2142 2143 2144
            init_scale_value = (
                np.ones(scale_var_shape, dtype=data_type) * _SCALE_DEFAULT_VALUE
            )
2145 2146 2147 2148
        else:
            scale_var_shape = 1
            scale_var_type = var_node.type()
            init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
2149

2150 2151 2152 2153 2154 2155 2156
        if (
            self._scale_dict is not None
            and var_node.name() in self._scale_dict.keys()
        ):
            init_scale_value = np.array(
                [self._scale_dict[var_node.name()]], dtype=data_type
            )
2157

2158
        scale_var_node = graph.create_persistable_node(
2159
            name=scale_name,
2160 2161
            var_type=scale_var_type,
            shape=[scale_var_shape],
2162 2163 2164 2165 2166
            var_dtype=var_node.dtype(),
        )
        _init_var_node(
            scale_var_node, init_scale_value, self._scope, self._place
        )
2167 2168 2169 2170 2171 2172 2173

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
2174 2175 2176 2177 2178 2179 2180 2181
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_var_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )
2182 2183 2184 2185 2186

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

2187
        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
2188
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
2189 2190
        outputs = {"Y": quant_var_node}
        if not self._is_test:
2191
            scale_out_node = graph.create_var_node_from_desc(
2192 2193
                scale_var_node.var()
            )
2194 2195 2196 2197
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
                shape=[1],
            )
            data_type = (
                'float64'
                if var_node.dtype() == core.VarDesc.VarType.FP64
                else 'float32'
            )
            _init_var_node(
                state_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2211 2212 2213 2214
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2215 2216 2217 2218 2219 2220 2221 2222
                shape=[1],
            )
            _init_var_node(
                accum_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2223
            state_out_node = graph.create_var_node_from_desc(
2224 2225
                state_in_node.var()
            )
2226
            accum_out_node = graph.create_var_node_from_desc(
2227 2228
                accum_in_node.var()
            )
2229

2230
            outputs["OutScale"] = scale_out_node
2231 2232 2233 2234 2235 2236
            inputs['InState'] = state_in_node
            inputs['InAccum'] = accum_in_node
            outputs['OutState'] = state_out_node
            outputs['OutAccum'] = accum_out_node
            attrs["is_test"] = self._is_test
            attrs['moving_rate'] = self._moving_rate
2237

2238 2239 2240 2241 2242 2243
        quant_op_node = graph.create_op_node(
            op_type="quantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs=outputs,
        )
2244 2245 2246 2247 2248 2249 2250

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
2251 2252 2253 2254
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
2265 2266
            var_dtype=var_node.dtype(),
        )
2267 2268 2269 2270 2271 2272 2273

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
2274 2275 2276 2277 2278 2279 2280 2281
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_var_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )
2282 2283 2284 2285 2286 2287

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
2288
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
2289

2290 2291 2292 2293 2294 2295
        quant_op_node = graph.create_op_node(
            op_type="dequantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs={"Y": dequant_var_node},
        )
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
H
handiz 已提交
2320
        return "%s@scale" % (var_name)
2321 2322 2323 2324 2325 2326 2327 2328

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


2329
class QuantizationTransformPassV2(QuantizationTransformPass):
2330 2331
    """
    Quantize the ops that have weights. Add quant and dequant ops for
2332
    the quantized ops's inputs. It is used in the new format of quantization.
2333 2334
    """

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
    def __init__(
        self,
        scope=None,
        place=None,
        weight_bits=8,
        activation_bits=8,
        activation_quantize_type='abs_max',
        weight_quantize_type='abs_max',
        window_size=10000,
        moving_rate=0.9,
        skip_pattern=['skip_quant'],
        quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
        weight_quantize_func=None,
        act_quantize_func=None,
        weight_preprocess_func=None,
        act_preprocess_func=None,
        optimizer_func=None,
        executor=None,
        is_test=None,
    ):
2355 2356 2357 2358 2359 2360 2361
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
2362
                where ``x`` is the index of the GPUs.
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
2380 2381
                detected in an op's name scope, the corresponding op will not be quantized.
            quantizable_op_type(list[str]): List the type of ops that will be quantized.
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
2440 2441 2442 2443
            'abs_max',
            'channel_wise_abs_max',
            'range_abs_max',
            'moving_average_abs_max',
2444
        ]
2445 2446 2447
        assert (
            activation_quantize_type != 'channel_wise_abs_max'
        ), "The activation quantization type does not support 'channel_wise_abs_max'."
2448 2449 2450
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
2451 2452 2453
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(activation_quantize_type))
            )
2454 2455 2456 2457
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
2458 2459
                "or 'moving_average_abs_max'." % (str(weight_quantize_type))
            )
2460 2461 2462 2463 2464 2465 2466 2467

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
2468
            assert op in utils._weight_supported_quantizable_op_type, (
2469
                op + " is not supported for quantization."
2470
            )
2471 2472 2473
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
2474
        self._is_test = is_test
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
2488 2489 2490 2491
            user_skipped = op_node.op().has_attr("op_namescope") and any(
                pattern in op_node.op().attr("op_namescope")
                for pattern in self._skip_pattern
            )
2492
        elif isinstance(self._skip_pattern, str):
2493 2494 2495 2496 2497
            user_skipped = (
                op_node.op().has_attr("op_namescope")
                and op_node.op().attr("op_namescope").find(self._skip_pattern)
                != -1
            )
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
2515 2516 2517
                is_weight = (
                    True if var_node.name() in self.persistable_vars else False
                )
2518 2519

                # if var node is weight and weight_preprocess_func is not None,
2520
                # will insert weight preprocess func
2521
                # to preorocess weight before quantization
2522 2523
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2524 2525
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2526 2527 2528
                    var_node = self._insert_func(
                        graph, self._weight_preprocess_func, var_node, op
                    )
2529
                elif not is_weight and self._act_preprocess_func is not None:
2530 2531 2532
                    var_node = self._insert_func(
                        graph, self._act_preprocess_func, var_node, op
                    )
2533 2534 2535 2536 2537 2538 2539

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
2540 2541
                        graph, self._weight_quantize_func, var_node, op
                    )
2542
                    self.processed_vars.append(name)
2543 2544
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2545 2546 2547
                    target_out_node = self._insert_func(
                        graph, self._act_quantize_func, var_node, op
                    )
2548
                    self.processed_vars.append(name)
2549 2550
                    continue

2551 2552 2553
                quant_bits = (
                    self._weight_bits
                    if var_node.name() in self.persistable_vars
2554
                    else self._activation_bits
2555 2556 2557 2558
                )
                quant_type = (
                    self._weight_quantize_type
                    if is_weight
2559
                    else self._activation_quantize_type
2560
                )
2561 2562 2563 2564
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
2565 2566 2567 2568 2569
                    quant_axis = (
                        1
                        if op.name() in utils._channelwise_quant_axis1_ops
                        else 0
                    )
2570 2571 2572 2573 2574 2575
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
2576
                    moving_rate=self._moving_rate,
2577 2578 2579 2580 2581 2582 2583 2584
                    is_test=self._is_test,
                )
                (
                    quant_var_node,
                    scale_var_node,
                ) = insert_quant_pass.insert_quant_op(
                    graph, var_node, var_name=name
                )
2585
                dequant_var_node = insert_quant_pass.insert_dequant_op(
2586 2587
                    graph, quant_var_node, scale_var_node
                )
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

                self.dequantized_vars[name] = dequant_var_node
            graph.update_input_link(var_node, dequant_var_node, op)

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            name = var_node.name()
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
2621 2622 2623
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
2624 2625
        if self._is_test is None:
            self._is_test = graph.is_test()
2626 2627 2628 2629 2630 2631 2632 2633 2634

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
2635 2636 2637 2638
            if (
                op.name() in self._quantizable_ops
                or op.name() in self._quantizable_grad_ops
            ):
2639 2640 2641 2642 2643
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2644 2645 2646 2647 2648
        with tqdm(
            total=len(ops),
            bar_format='Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
2649 2650
            for op in ops:
                if op.name() in self._quantizable_ops:
2651 2652 2653
                    if not self._is_skip_quant(graph, op) and self._has_weight(
                        op
                    ):
2654 2655
                        self._transform_forward(graph, op)
                t.update()
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


class AddQuantDequantPassV2(object):
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
2666
    op for the quantized ops's inputs. It is used in the new format of quantization.
2667 2668 2669 2670 2671
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    def __init__(
        self,
        scope=None,
        place=None,
        moving_rate=0.9,
        quant_bits=8,
        skip_pattern=["skip_quant"],
        quantizable_op_type=["elementwise_add", "pool2d"],
        is_full_quantized=False,
        is_test=None,
        scale_dict=None,
    ):
2684 2685 2686 2687 2688 2689
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2690
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
2691 2692 2693 2694 2695 2696
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
2697 2698 2699
            quantizable_op_type(list[str], optional): List the type of ops that will be
                quantized. Default is ["elementwise_add", "pool2d"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply
2700
                quantization to all supported quantizable op type. If set is_full_quantized
2701
                as False, only apply quantization to the op type according to the input
2702
                quantizable_op_type.
2703
            scale_dict(dict, optional): calibration ranges of tensors output.
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
2724
        self._is_test = is_test
2725
        self._skip_pattern = skip_pattern
2726
        self._scale_dict = scale_dict
2727 2728 2729 2730 2731 2732

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
2733
                assert op_type in utils._act_supported_quantizable_op_type, (
2734
                    op_type + " is not supported for quantization."
2735
                )
2736 2737 2738 2739
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

2740 2741
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
2754 2755 2756
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
2757 2758
        if self._is_test is None:
            self._is_test = graph.is_test()
2759 2760 2761 2762 2763 2764 2765 2766
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2767 2768 2769 2770 2771
        with tqdm(
            total=len(all_op_nodes),
            bar_format='Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
2772 2773 2774 2775
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
2776 2777 2778 2779
                        is_skip = op_node.op().has_attr("op_namescope") and any(
                            pattern in op_node.op().attr("op_namescope")
                            for pattern in self._skip_pattern
                        )
2780
                    elif isinstance(self._skip_pattern, str):
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
                        is_skip = (
                            op_node.op().has_attr("op_namescope")
                            and op_node.op()
                            .attr("op_namescope")
                            .find(self._skip_pattern)
                            != -1
                        )
                    is_quantized = (
                        op_node.op().has_attr("quantization_type")
                        and op_node.op().attr("quantization_type")
                        == "qat_with_weight"
                    )
2793
                    if is_skip or is_quantized:
2794
                        continue
2795 2796 2797 2798

                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
2799 2800
                            op_node.inputs, arg_name
                        )
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
2812
                                moving_rate=self._moving_rate,
2813
                                is_test=self._is_test,
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
                                scale_dict=self._scale_dict,
                            )
                            (
                                quant_var_node,
                                scale_var_node,
                            ) = insert_quant_pass.insert_quant_op(
                                graph, in_node
                            )
                            dequant_var_node = (
                                insert_quant_pass.insert_dequant_op(
                                    graph, quant_var_node, scale_var_node
                                )
                            )
2827
                            dequantized_vars_map[arg_name] = dequant_var_node
2828 2829 2830
                        graph.update_input_link(
                            in_node, dequant_var_node, op_node
                        )
2831
                t.update()
2832 2833 2834 2835 2836 2837

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2838
                        in_node = graph._find_node_by_name(
2839 2840
                            op_node.inputs, input_name
                        )
2841
                        dequant_var_node = dequantized_vars_map[input_name]
2842 2843 2844
                        graph.update_input_link(
                            in_node, dequant_var_node, op_node
                        )
2845 2846 2847 2848 2849 2850 2851 2852 2853

        return graph


class ReplaceFakeQuantDequantPass(object):
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

2854
    def __init__(self, scope, place, quant_bits=8):
2855 2856 2857 2858 2859 2860
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2861
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
2862

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
2880
        self._quant_bits = quant_bits
2881 2882
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
2883 2884

    def apply(self, graph):
2885 2886 2887
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
2888 2889 2890
        fake_quant_dequant_ops = []

        for op in graph.all_op_nodes():
2891 2892 2893 2894
            if (
                op.name() in _fake_quant_dequant_op_list
                or op.name() == "moving_average_abs_max_scale"
            ):
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
                fake_quant_dequant_ops.append(op)

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
        scale_node = graph._find_node_by_name(
            op.outputs, op.output("OutScale")[0]
        )

        quant_axis = (
            op.op().attr("quant_axis") if op.op().has_attr("quant_axis") else -1
        )
        bit_length = (
            op.op().attr("bit_length")
            if op.op().has_attr("bit_length")
            else self._quant_bits
        )
2919 2920 2921 2922 2923 2924 2925 2926

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(x_node.name()),
            var_type=x_node.type(),
            shape=x_node.shape(),
            var_dtype=x_node.dtype(),
        )
        quant_op_node = graph.create_op_node(
            op_type="quantize_linear",
            attrs={"quant_axis": quant_axis, "bit_length": bit_length},
            inputs={
                "X": x_node,
                "Scale": scale_node,
                "ZeroPoint": zero_point_node,
            },
            outputs={"Y": quant_var_node},
        )
2952 2953 2954 2955 2956
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        dequant_op_node = graph.create_op_node(
            op_type="dequantize_linear",
            attrs={"quant_axis": quant_axis, "bit_length": bit_length},
            inputs={
                "X": quant_var_node,
                "Scale": scale_node,
                "ZeroPoint": zero_point_node,
            },
            outputs={"Y": out_node},
        )
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantWeightPass(object):
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

3017 3018 3019 3020 3021 3022 3023 3024
    def __init__(
        self,
        scope,
        place,
        bias_correction=False,
        quant_bits=8,
        save_int_weight=True,
    ):
3025 3026 3027 3028 3029
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
3030 3031
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
3032 3033

    def apply(self, graph):
3034 3035 3036
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
3037 3038 3039 3040 3041 3042 3043 3044
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
3045 3046 3047
                scale_node = graph._find_node_by_name(
                    _op.inputs, _op.input("Scale")[0]
                )
3048
                zero_point_node = graph._find_node_by_name(
3049 3050 3051 3052 3053
                    _op.inputs, _op.input("ZeroPoint")[0]
                )
                out_node = graph._find_node_by_name(
                    _op.outputs, _op.output("Y")[0]
                )
3054 3055

                scale_v = self._load_var(scale_node.name())
3056 3057 3058 3059
                assert scale_v.ndim in [
                    1,
                    2,
                ], "the dim of scale_v should be 1 or 2"
3060 3061 3062 3063 3064 3065 3066 3067 3068
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
3069 3070 3071 3072 3073 3074 3075
                quantized_param_v = utils.quant_tensor(
                    param_v.copy(),
                    scale_v,
                    quant_axis,
                    bits_length,
                    onnx_format=True,
                )
3076 3077 3078 3079 3080 3081
                if self._bias_correction == True:
                    quantized_param_v = utils.bias_correction_w(
                        param_v,
                        quantized_param_v,
                        scale_v,
                        quant_axis,
3082 3083
                        weight_bits=bits_length,
                    )
3084 3085 3086 3087 3088
                if self._save_int_weight:
                    # cast weight type to int
                    if self._quant_bits == 8:
                        save_weight_dtype = np.int8
                    quantized_param_v = quantized_param_v.astype(
3089 3090
                        save_weight_dtype
                    )
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
                self._restore_var(x_node.name(), quantized_param_v)

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
3110 3111 3112 3113
            for n in filter(
                lambda node: node.node not in all_used_vars,
                graph.all_var_nodes(),
            )
3114 3115 3116 3117 3118 3119 3120 3121 3122
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147


class AddQuantDequantForInferencePass(object):
    """
    When export quant model, it will traverse to find the output of each op, and then insert the quant/dequant op after it.
    """

    def __init__(self, scope, place, quant_bits=8):
        """
        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, it can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
            quant_bits(int, optional): quantization bit number for weight. Default is 8.
        """
        self._scope = scope
        self._place = place
        self._quant_bits = quant_bits
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST

    def apply(self, graph):
        """
        Args:
            graph(IrGraph): the target graph.
        """
3148 3149 3150
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
3151 3152 3153 3154 3155 3156
        dequant_node_map = {}
        dequantized_vars_map = collections.OrderedDict()
        for op_node in graph.all_op_nodes():
            if op_node.name() in self._teller_set:
                var_names = utils._get_op_output_var_names(op_node)
                for var_name in var_names:
3157 3158 3159 3160 3161 3162 3163
                    out_node = graph._find_node_by_name(
                        op_node.outputs, var_name
                    )
                    if out_node.dtype() not in [
                        core.VarDesc.VarType.FP64,
                        core.VarDesc.VarType.FP32,
                    ]:
3164 3165 3166 3167 3168
                        continue
                    if var_name in dequantized_vars_map:
                        dequant_var_node = dequantized_vars_map[var_name]
                    else:
                        dequant_var_node = self._insert_quant_dequant_op(
3169 3170
                            graph, out_node
                        )
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
                        dequantized_vars_map[var_name] = dequant_var_node
                    dequant_node_map[var_name] = dequant_var_node

        # remove unuse node and link act quant/dequant linear to op node
        for op_node in graph.all_op_nodes():
            if op_node.name() == 'moving_average_abs_max_scale':
                graph.safe_remove_nodes(op_node)
            else:
                var_names = utils._get_op_input_var_names(op_node)
                for var_name in var_names:
                    if var_name in dequant_node_map:
                        in_node = graph._find_node_by_name(
3183 3184 3185 3186 3187
                            op_node.inputs, var_name
                        )
                        graph.update_input_link(
                            in_node, dequant_node_map[var_name], op_node
                        )
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)

    def _insert_quant_dequant_op(self, graph, var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
        var_name = var_node.name()
        quant_axis = -1
        quant_var_node = graph.create_var_node(
            name="{}.quantized".format(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
3205 3206 3207 3208 3209
            var_dtype=var_node.dtype(),
        )
        scale_var_node = graph._find_node_by_name(
            graph.all_persistable_nodes(), self._scale_name(var_name)
        )
3210 3211 3212
        try:
            zero_point_node = graph._find_node_by_name(
                graph.all_persistable_nodes(),
3213 3214
                "{}@zero_point".format(quant_var_node.name()),
            )
3215 3216 3217 3218 3219
        except:
            zero_point_node = graph.create_persistable_node(
                name="{}@zero_point".format(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
3220 3221 3222 3223 3224 3225 3226 3227
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_var_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )
3228 3229 3230 3231 3232 3233 3234 3235 3236

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": quant_axis, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
        outputs = {"Y": quant_var_node}

3237 3238 3239 3240 3241 3242
        quant_op_node = graph.create_op_node(
            op_type="quantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs=outputs,
        )
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)

        # add dequant_linear node
        dequant_var_node = graph.create_var_node(
            name="{}.dequantized".format(quant_var_node.name()),
            var_type=quant_var_node.type(),
            shape=quant_var_node.shape(),
3255 3256
            var_dtype=quant_var_node.dtype(),
        )
3257 3258 3259 3260 3261 3262 3263 3264

        inputs = {"X": quant_var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": -1, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward

3265 3266 3267 3268 3269 3270
        dequant_op_node = graph.create_op_node(
            op_type="dequantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs={"Y": dequant_var_node},
        )
3271 3272 3273 3274 3275 3276 3277

        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node