quantization_pass.py 121.4 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17 18 19 20
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
21
from ..... import compat as cpt
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
32
from ....framework import _get_paddle_place
33
from . import utils
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
]
W
WangZhen 已提交
48

49 50 51 52 53 54 55 56 57
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

58
_fake_quant_dequant_op_list = [
59 60
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
61 62
]

63 64
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

65
_SCALE_DEFAULT_VALUE = 0.001
66 67


68 69 70 71
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
72
        'The scope cannot be set None.'
73
    assert place is not None, \
74
        'The place cannot be set None.'
75 76 77 78
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


79 80 81 82 83
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
84
    for var_name in utils._get_op_input_var_names(op_node):
85 86 87
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
88 89 90
    return is_input_all_not_persistable


91 92 93 94 95 96 97 98 99 100 101 102 103 104
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


105
class QuantizationTransformPass(object):
106
    """
107 108
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
109
    """
110

W
WangZhen 已提交
111
    def __init__(self,
112
                 scope=None,
113
                 place=None,
W
WangZhen 已提交
114 115 116 117
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
118
                 window_size=10000,
119
                 moving_rate=0.9,
120
                 skip_pattern=['skip_quant'],
121
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
122
                 round_type='TiesToEven',
123 124 125 126 127 128
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
129
        r"""
130
        Constructor.
131

W
WangZhen 已提交
132
        Args:
133
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
134 135
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
136 137 138
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
139
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
140
                the bias is not quantized.
141 142
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
143 144 145 146 147
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
148
            weight_quantize_type(str): quantization type for weights,
149 150 151
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
152 153
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
154
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
155
                will be presented in the name scope of an op. When the skip pattern is
156
                detected in an op's name scope, the corresponding op will not be quantized. 
157
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
158 159
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
160 161 162 163
            round_type(str, optional): The method of converting the tensor value float->int.
                Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
                Default is `TiesToEven`, which is rounding to nearest ties to even. 
                'TiesAwayFromZero' is rounding to nearest ties away from zero.
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
191 192
                Default is None.

193

W
WangZhen 已提交
194 195
        Examples:
        .. code-block:: python
196 197 198 199
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
200
            from paddle.fluid.contrib.slim.graph import IrGraph
201 202
            from paddle.fluid import core

203
            graph = IrGraph(core.Graph(program.desc), for_test=False)
204
            place = fluid.CPUPlace()
205
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
206
            place)
207
            transform_pass.apply(graph)
W
WangZhen 已提交
208
        """
209
        self._scope = scope
210
        self._place = _get_paddle_place(place)
211 212
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
213
        self._skip_pattern = skip_pattern
214
        self._round_type = round_type
215 216 217 218 219 220
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
221 222 223 224
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
225 226
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
227 228
        if activation_quantize_type not in quant_type:
            raise ValueError(
229 230 231
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
232 233
        if weight_quantize_type not in quant_type:
            raise ValueError(
234
                "Unknown weight_quantize_type: '%s'. It can only be "
235 236
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
237

238 239 240
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
241
        self._moving_rate = moving_rate
W
WangZhen 已提交
242

243 244
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
245
            assert op in utils._weight_supported_quantizable_op_type, \
246
                op + " is not supported for quantization."
247 248
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
249
        ]
250 251
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
252

253 254 255
        self.create_var_map = {}
        self.create_op_map = {}

256
    def apply(self, graph):
257 258 259 260 261 262 263
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
264 265
        Returns:
            None
266
        """
W
WangZhen 已提交
267
        assert isinstance(graph,
268 269
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
270 271
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
272
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
273
        processed_vars = []
W
WangZhen 已提交
274

275
        def _quant_preprocess(op_node):
276 277 278
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
279 280
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
281 282
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
283 284
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
285

286
            if user_skipped:
287
                op_node.op()._set_attr("skip_quant", True)
288
                op_node.op()._set_attr("with_quant_attr", True)
289

W
WangZhen 已提交
290
        def _transform_forward(graph, op):
291
            op.op()._set_attr("quantization_type", "qat_with_weight")
292
            op.op()._set_attr("with_quant_attr", True)
293 294
            inputs = op.inputs
            for var_node in inputs:
295 296
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
297 298 299
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
300 301 302
                    name = var_node.name()
                    if name in processed_vars:
                        continue
303 304
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
305 306

                    # if var node is weight and weight_preprocess_func is not None,
307
                    # will insert weight preprocess func
308
                    # to preorocess weight before quantization
309 310
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
311 312 313 314 315
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
316 317 318
                        var_node = self._insert_func(graph,
                                                     self._act_preprocess_func,
                                                     var_node, op)
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
335
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
336
                        else self._activation_bits
337 338
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
339 340
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
341
                            utils._channelwise_quant_axis1_ops else 0
342 343 344 345 346
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
347 348
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
349
                            graph, var_node, name, quant_bits, quant_type)
350 351
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
352
                    dequantized_vars[name] = dequant_var_node
353
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
354 355 356

        def _transform_backward(graph, op):
            for var_node in op.inputs:
357 358
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
359 360
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
361
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
362

X
XGZhang 已提交
363 364 365 366 367 368 369 370 371 372
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

373
        if not self._is_test:
W
WangZhen 已提交
374
            self._create_global_step(graph)
375
        ops = graph.all_op_nodes()
376 377 378 379 380 381
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
382 383
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
384 385
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
386 387 388 389 390 391 392 393 394
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
395 396
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
397
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
398
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
399
        graph.resolve_hazard()
400
        return graph
W
WangZhen 已提交
401

W
WangZhen 已提交
402
    def _create_global_step(self, graph):
403 404
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
405
            counter_name = cpt.to_text('@STEP_COUNTER@')
406
            for node in graph.all_var_nodes():
W
WangZhen 已提交
407
                if node.name() == counter_name:
408 409
                    self._global_step = node
            if self._global_step is None:
410
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
411 412 413 414
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
415 416
                _init_var_node(global_step_in, np.zeros([1], dtype='int64'),
                               self._scope, self._place)
W
WangZhen 已提交
417 418
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
419
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
420 421
                increment_op = graph.create_op_node(
                    op_type='increment',
422 423 424 425 426
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
427 428
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
429 430 431
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
432

433
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
434 435 436 437
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
438 439
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
440
        elif quant_type == 'range_abs_max':
441
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
442
                                                       quant_bits)
443
        elif quant_type == 'moving_average_abs_max':
444 445
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
446

447
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
448 449 450 451 452 453
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
454
            name=self._quantized_var_name(name),
455 456 457
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
458
        scale_var_node = graph.create_persistable_node(
459
            name=self._quantized_scale_name(name),
460
            var_type=var_node.type(),
461
            shape=[1],
462
            var_dtype=var_node.dtype())
463 464
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
465 466 467
        _init_var_node(scale_var_node,
                       np.zeros(scale_var_node.shape(), dtype=data_type),
                       self._scope, self._place)
468
        round_type = 0 if self._round_type == 'TiesToEven' else 1
W
WangZhen 已提交
469 470
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
471 472
            attrs={
                'bit_length': quant_bits,
473
                'round_type': round_type,
474 475
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
476
            inputs={'X': var_node},
477 478 479 480
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
481 482 483
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
484 485
        return quant_var_node, scale_var_node

486
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
487 488 489 490 491 492
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
493
            name=self._quantized_var_name(name),
494 495 496
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
497

498
        scale_in_node = graph.create_persistable_node(
499
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
500 501
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
502
            var_dtype=var_node.dtype())
503 504
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
505 506 507
        _init_var_node(scale_in_node,
                       np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
                       self._scope, self._place)
W
WangZhen 已提交
508 509 510 511 512

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

513
        if not self._is_test:
W
WangZhen 已提交
514
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
515
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
516 517
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
518
                shape=[self._window_size],
519
                var_dtype=var_node.dtype())
520 521
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
522 523 524
            _init_var_node(scales_node,
                           np.zeros([self._window_size], dtype=data_type),
                           self._scope, self._place)
525

526
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
527
            outputs['OutScales'] = scales_node
528
        round_type = 0 if self._round_type == 'TiesToEven' else 1
W
WangZhen 已提交
529
        attrs = {
530
            'window_size': self._window_size,
W
WangZhen 已提交
531
            'bit_length': quant_bits,
532
            'round_type': round_type,
533 534
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
535 536 537 538 539 540 541
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

542 543 544 545
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
546

547 548 549
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
550 551 552

        return quant_var_node, scale_out_node

553
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
554 555 556 557
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
558
            name=self._quantized_var_name(name),
559 560 561 562
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
563
            name=self._quantized_scale_name(name),
564 565 566
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
567 568
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
569 570 571
        _init_var_node(scale_in_node,
                       np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
                       self._scope, self._place)
572 573 574 575 576 577 578 579 580 581

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
582 583
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
584 585
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
586 587 588 589 590
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
591 592 593 594 595 596
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
597 598 599 600 601 602

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

603
        round_type = 0 if self._round_type == 'TiesToEven' else 1
604 605
        attrs = {
            'bit_length': quant_bits,
606
            'round_type': round_type,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

631 632
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
633 634 635 636 637 638
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
639
            name=self._quantized_var_name(name),
640 641 642
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
643
        scale_var_node = graph.create_persistable_node(
644
            name=self._quantized_scale_name(name),
645
            var_type=var_node.type(),
646
            shape=[var_node.shape()[quant_axis]],
647
            var_dtype=var_node.dtype())
648 649
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
650 651 652
        _init_var_node(scale_var_node,
                       np.zeros(scale_var_node.shape(), dtype=data_type),
                       self._scope, self._place)
653
        round_type = 0 if self._round_type == 'TiesToEven' else 1
654 655 656 657
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
658
                'round_type': round_type,
659
                'quant_axis': quant_axis,
660
                'is_test': self._is_test,
661 662 663
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
664 665 666 667
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
668 669 670 671 672
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
673 674 675 676 677 678 679 680
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
681 682 683
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
684 685 686
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
687 688 689 690
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
691 692 693 694
            inputs={
                'X': var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
695
            outputs={'Out': dequant_var_node})
696 697 698
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
699 700
        return dequant_var_node

701
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
702
                                   quant_bits, quant_axis):
703 704 705 706 707 708 709 710 711 712 713 714 715 716
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
717
                'quant_axis': quant_axis,
718 719
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
720 721 722 723
            inputs={
                'X': var_node,
                'Scales': scale_var_nodes
            },
724 725 726 727 728 729 730
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
811 812 813
                in_node = data(var_node.name() + '_tmp_input',
                               shape=var_node.shape(),
                               dtype='float32')
814
                out_node = func(in_node)
815
                graph.out_node_mapping_table[out_node.name] = var_node.name()
816 817 818 819 820 821 822 823 824 825
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

826 827
        tmp_graph = IrGraph(core.Graph(tmp_program.desc),
                            for_test=graph._for_test)
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
868 869
                graph.all_var_nodes(),
                target_out_node.name() + "@GRAD")
870
            in_node_grad = graph._find_node_by_name(
871 872
                graph.all_var_nodes(),
                target_in_node.name() + "@GRAD")
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
921
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
922 923
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
924

925
    def _is_skip_quant(self, graph, op_node):
926 927 928 929 930 931 932 933 934 935 936 937
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
938 939 940
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
941 942
        return is_skip

W
WangZhen 已提交
943 944

class QuantizationFreezePass(object):
945

W
WangZhen 已提交
946 947 948
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
949
                 bias_correction=False,
W
WangZhen 已提交
950 951
                 weight_bits=8,
                 activation_bits=8,
952 953
                 weight_round_algo='round',
                 round_type='TiesToEven',
954
                 weight_quantize_type='abs_max',
955
                 quantizable_op_type=None):
956 957
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
958
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
959
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
960 961
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
962 963 964

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
965 966
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
967 968
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
969 970
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
971 972 973 974 975 976 977 978
            weight_round_algo(str, optional): The method of converting the quantized weights
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
            round_type(str, optional): The method of converting the tensor value float->int.
                Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
                Default is `TiesToEven`, which is rounding to nearest ties to even. 
                'TiesAwayFromZero' is rounding to nearest ties away from zero.
979 980 981
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
982 983
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
984
        """
W
WangZhen 已提交
985 986 987 988 989
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
990
        self._bias_correction = bias_correction
991
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
992 993
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
994
        self._weight_round_algo = weight_round_algo
995
        self._round_type = round_type
W
WangZhen 已提交
996
        self._weight_quantize_type = weight_quantize_type
997 998
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
999 1000
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1001
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1002 1003

    def apply(self, graph):
1004 1005 1006 1007 1008
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1009 1010
        Returns:
            None
1011
        """
1012
        # Get input scales in fake quant op and process weights
1013 1014
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1015 1016 1017
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1018
                input_arg_name = op_node.input('X')[0]
1019 1020 1021 1022
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1023 1024
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1025 1026
                        op_node.outputs,
                        op_node.output('OutScale')[0])
1027 1028 1029 1030 1031 1032 1033 1034 1035
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1036
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1037
                        scale_v = scale_v[0]
W
WangZhen 已提交
1038
                    else:
1039
                        scale_v = scale_v.tolist()
1040
                    self._quant_var_scale_map[input_arg_name] = scale_v
1041
                    # Quantize weight and restore
1042 1043
                    if self._weight_round_algo == 'round':
                        param_v = self._load_var(input_arg_name)
1044 1045
                        if any(
                                _check_grandchild_op_node(op_node, op)
1046
                                for op in utils._channelwise_quant_axis1_ops):
1047 1048 1049
                            quant_axis = 1
                        else:
                            quant_axis = 0
1050 1051
                        quantized_param_v = utils.quant_tensor(
                            param_v.copy(), scale_v, quant_axis,
1052 1053
                            self._weight_bits, self._round_type)
                        # Weight bias correction
1054
                        if self._bias_correction == True:
1055 1056 1057 1058 1059 1060
                            quantized_param_v = utils.bias_correction_w(
                                param_v,
                                quantized_param_v,
                                scale_v,
                                quant_axis,
                                weight_bits=self._weight_bits)
1061
                        self._restore_var(input_arg_name, quantized_param_v)
1062
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1063

1064
        # Remove all fake dequant op
1065
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1066 1067 1068 1069 1070
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1071
        # Insert post dequant op
1072
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1073
        for op_node in ops:
1074 1075 1076
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1077
                if self._weight_quantize_type == 'channel_wise_abs_max':
1078
                    quant_axis = 1 if op_node.name() in \
1079
                        utils._channelwise_quant_axis1_ops else 0
1080 1081
                    self._insert_post_channel_dequant_op(
                        graph, op_node, quant_axis)
1082 1083
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1084

1085
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1086 1087
        for op_node in ops:
            for var_node in op_node.inputs:
1088 1089 1090
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1091 1092 1093 1094
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1095
        graph.resolve_hazard()
1096
        return graph
W
WangZhen 已提交
1097 1098

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1099 1100
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1101 1102
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1103
        else:
1104 1105
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1106
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1107

1108
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1109 1110 1111
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1112 1113 1114 1115 1116
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1117 1118 1119
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1120
            scale_v = self._quant_var_scale_map[original_var_name]
1121 1122 1123 1124 1125 1126 1127 1128
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1129
                scale_var_node = self._quant_var_scale_map[original_var_name]
1130

1131
        if len(op_node.output_arg_names()) != 1:
1132 1133 1134
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1135
        output_var_node = graph._find_node_by_name(
1136 1137
            op_node.outputs,
            op_node.output_arg_names()[0])
1138 1139 1140 1141 1142
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1143 1144
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1145 1146
        _init_var_node(weight_scale_node, channel_scale.astype(data_type),
                       self._scope, self._place)
1147 1148 1149 1150 1151
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1152 1153 1154
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1155 1156
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1157 1158 1159 1160
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1161
                'quant_axis': quant_axis,
1162 1163
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1174
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1175 1176
        return dequant_var_node

W
WangZhen 已提交
1177
    def _insert_post_dequant_op(self, graph, op_node):
1178
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1179 1180 1181
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1182
        for var_node in op_node.inputs:
W
WangZhen 已提交
1183
            name = var_node.name()
1184 1185 1186 1187 1188
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1189
                new_in.clear_outputs()
W
WangZhen 已提交
1190 1191
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1192
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1193 1194 1195 1196
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1197
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1198
                max_range *= param_range / scale_v
W
WangZhen 已提交
1199
            else:
1200
                max_range *= act_range
1201
                assert isinstance(scale_v, IrNode)
1202
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1203

1204
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1205 1206 1207
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1208
        output_var_node = graph._find_node_by_name(
1209 1210
            op_node.outputs,
            op_node.output_arg_names()[0])
W
WangZhen 已提交
1211 1212
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1213 1214 1215
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1216 1217
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1218 1219 1220 1221
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
1222 1223 1224 1225
            inputs={
                'X': output_var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
1226 1227 1228 1229
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1230
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1231 1232 1233 1234 1235
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1236 1237 1238
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1239 1240 1241

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1242
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1243 1244 1245 1246 1247 1248
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1249 1250 1251 1252 1253 1254
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1278
    def _is_float(self, v):
W
WangZhen 已提交
1279 1280 1281
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1282 1283

class ConvertToInt8Pass(object):
1284

1285
    def __init__(self, scope, place, quantizable_op_type=None):
1286 1287 1288 1289 1290
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1291 1292 1293
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1294 1295
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1296
        """
1297 1298 1299 1300 1301
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1302
        self._place = _get_paddle_place(place)
1303 1304

    def apply(self, graph):
1305
        """
T
tianshuo78520a 已提交
1306 1307
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1308 1309 1310

        Args:
            graph(IrGraph): the applied graph.
1311 1312
        Returns:
            None
1313
        """
1314 1315
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1316 1317
        input_map = {}
        for op_node in ops:
1318 1319
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1320 1321 1322 1323
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1324 1325
                            int8_var_node = self._convert_to_int8(
                                graph, var_node)
1326 1327 1328 1329 1330 1331
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1332
        graph.resolve_hazard()
1333 1334 1335 1336
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1337
        int8_var_node = graph.create_persistable_node(
1338
            name=cpt.to_text(int8_var_node_name),
1339 1340
            var_type=var_node.type(),
            shape=var_node.shape(),
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1356
        ops = graph.all_op_nodes()
1357 1358 1359 1360 1361 1362
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1363 1364 1365 1366 1367 1368
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1369 1370 1371 1372
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
1373

1374
    def __init__(self):
1375
        """
T
tianshuo78520a 已提交
1376
        This pass is used to convert the frozen graph for paddle-mobile execution.
1377
        """
1378 1379
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1380 1381

    def apply(self, graph):
1382 1383 1384 1385 1386 1387 1388
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1389 1390
        Returns:
            None
1391
        """
1392
        ops = graph.all_op_nodes()
1393 1394 1395
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1396
                op_node.set_type('quantize')
1397 1398 1399 1400 1401 1402 1403
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1404
                op_node.set_type('dequantize')
1405 1406 1407 1408 1409 1410
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1411
        graph.resolve_hazard()
1412
        return graph
1413 1414


1415
class OutScaleForTrainingPass(object):
1416

1417 1418 1419 1420 1421 1422 1423
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1424 1425 1426
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1427 1428 1429
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1430
        self._place = _get_paddle_place(place)
1431 1432
        self._moving_rate = moving_rate
        self._is_test = None
1433
        self._teller_set = utils._out_scale_op_list
1434 1435 1436 1437 1438 1439 1440 1441 1442

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1443 1444
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1445
        self._is_test = graph.is_test()
1446 1447 1448 1449
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        with tqdm(total=len(target_ops),
                  bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
                    in_node = graph._find_node_by_name(op.outputs,
                                                       output_var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
1460

1461 1462
                    scale_node = graph.create_persistable_node(
                        name=self._scale_name(in_node.name()),
1463
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
1464 1465 1466 1467 1468
                        shape=[1],
                        var_dtype=in_node.dtype())
                    data_type = 'float64' if in_node.dtype() \
                        == core.VarDesc.VarType.FP64 else 'float32'
                    _init_var_node(scale_node, np.ones([1], dtype=data_type),
1469
                                   self._scope, self._place)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(state_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(accum_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        state_out_node = graph.create_var_node_from_desc(
                            state_in_node.var())
                        accum_out_node = graph.create_var_node_from_desc(
                            accum_in_node.var())

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
                        outputs=outs)
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1518 1519 1520 1521 1522 1523
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1524
        return "%s@scale" % (var_name)
1525 1526


1527
class OutScaleForInferencePass(object):
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1538
        self._teller_set = utils._out_scale_op_list
1539 1540 1541 1542 1543 1544 1545 1546 1547

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1548 1549
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1550 1551 1552
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1553
                var_names = utils._get_op_output_var_names(op_node)
1554
                for var_name in var_names:
1555 1556 1557 1558 1559 1560
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1561
                    scale_name = self._scale_name(var_name)
1562 1563 1564 1565 1566 1567 1568
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1569

1570 1571
                    argname_index = utils._get_output_name_index(
                        op_node, var_name)
1572 1573 1574
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1575
                        + "_threshold", float(scale_value))
1576
                    op_node.op()._set_attr("with_quant_attr", True)
1577 1578 1579 1580 1581 1582 1583
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1584
        return "%s@scale" % (var_name)
1585 1586 1587


class AddQuantDequantPass(object):
1588 1589 1590 1591
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1592

1593 1594 1595
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1596 1597 1598 1599 1600
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1601
                 skip_pattern=["skip_quant"],
1602
                 quantizable_op_type=["elementwise_add", "pool2d"],
1603 1604
                 is_full_quantized=False,
                 round_type='TiesToEven'):
1605
        """
1606
        Constructor.
1607 1608 1609

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1610 1611 1612
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1613 1614 1615 1616 1617 1618 1619 1620
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1621
                quantized. Default is ["elementwise_add", "pool2d"]. 
1622 1623 1624 1625
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1626 1627 1628 1629
            round_type(str, optional): The method of converting the tensor value float->int.
                Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
                Default is `TiesToEven`, which is rounding to nearest ties to even. 
                'TiesAwayFromZero' is rounding to nearest ties away from zero.
1630 1631
        """
        self._scope = scope
1632
        self._place = _get_paddle_place(place)
1633 1634 1635
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1636
        self._skip_pattern = skip_pattern
1637
        self._round_type = round_type
1638 1639

        if is_full_quantized:
1640
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1641 1642 1643
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1644
                assert op_type in utils._act_supported_quantizable_op_type, \
1645
                    op_type + " is not supported for quantization."
1646 1647 1648 1649
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1650 1651
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1652 1653 1654

    def apply(self, graph):
        """
1655 1656
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1657

1658 1659
        Args:
            graph(IrGraph): the target graph.
1660 1661
        Returns:
            None
1662 1663 1664 1665
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1666 1667
        dequantized_vars_map = collections.OrderedDict()

1668 1669
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized or \
                        (not _is_input_all_not_persistable(graph, op_node)):
                        continue
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
                            quant_var_node, _ = \
                                self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits)
                            dequantized_vars_map[arg_name] = quant_var_node
                        graph.update_input_link(in_node, quant_var_node,
                                                op_node)
            t.update()
1707

1708 1709
        # Backward stage, update input link
        for op_node in all_op_nodes:
1710
            if op_node.name() in self._quantizable_grad_op_type:
1711 1712
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1713 1714
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
1715 1716 1717 1718
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1719 1720 1721 1722 1723 1724 1725
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
1726 1727 1728 1729 1730
        quant_var_node = graph.create_var_node(name="{}.quant_dequant".format(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1731 1732 1733 1734 1735 1736 1737
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1738 1739 1740
        _init_var_node(scale_in_node,
                       np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
                       self._scope, self._place)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
1753 1754
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
1755 1756 1757 1758 1759
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
1760 1761 1762 1763 1764 1765
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
1766 1767 1768 1769 1770 1771

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

1772
        round_type = 0 if self._round_type == 'TiesToEven' else 1
1773 1774
        attrs = {
            'bit_length': quant_bits,
1775
            'round_type': round_type,
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814


class InsertQuantizeLinear(object):
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
        is_test(bool, optional): Whether quantization with training or not. Default is True.
1815 1816 1817 1818
        round_type(str, optional): The method of converting the tensor value float->int.
            Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
            Default is `TiesToEven`, which is rounding to nearest ties to even. 
            'TiesAwayFromZero' is rounding to nearest ties away from zero.
1819 1820 1821 1822 1823 1824 1825 1826
    """

    def __init__(self,
                 place,
                 scope,
                 quant_bits=8,
                 quant_axis=-1,
                 channel_wise=False,
1827 1828
                 is_test=True,
                 round_type='TiesToEven'):
1829 1830 1831 1832 1833 1834
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test
1835
        self._round_type = round_type
1836 1837 1838 1839

    def insert_quant_op(self, graph, var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

1840 1841 1842 1843 1844
        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        if self.channel_wise:
            scale_var_shape = var_node.shape()[self.quant_axis]
            scale_var_type = core.VarDesc.VarType.LOD_TENSOR
            init_scale_value = np.zeros(scale_var_shape, dtype=data_type)
        else:
            scale_var_shape = 1
            scale_var_type = var_node.type()
            init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
        scale_var_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=scale_var_type,
            shape=[scale_var_shape],
            var_dtype=var_node.dtype())
        _init_var_node(scale_var_node, init_scale_value, self._scope,
                       self._place)

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1870 1871 1872
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1873 1874 1875 1876 1877

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

1878 1879 1880 1881 1882 1883
        round_type = 0 if self._round_type == 'TiesToEven' else 1
        attrs = {
            "quant_axis": self.quant_axis,
            "bit_length": self.quant_bits,
            "round_type": round_type
        }
1884 1885 1886 1887
        outputs = {"Y": quant_var_node}
        if not self._is_test:
            attrs["is_test"] = self._is_test
            attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1888 1889
            scale_out_node = graph.create_var_node_from_desc(
                scale_var_node.var())
1890 1891
            outputs["OutScale"] = scale_out_node

1892 1893 1894 1895
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1922 1923 1924
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1925 1926 1927 1928 1929 1930 1931 1932 1933

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
        if not self._is_test:
            attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward

1934 1935 1936 1937
        quant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs={"Y": dequant_var_node})
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
        return "%s.scale" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantizationTransformPassV2(object):
    """
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
    """

    def __init__(self,
                 scope=None,
                 place=None,
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000,
                 moving_rate=0.9,
                 skip_pattern=['skip_quant'],
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
1988
                 round_type='TiesToEven',
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized. 
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
2024 2025 2026 2027
            round_type(str, optional): The method of converting the tensor value float->int.
                Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
                Default is `TiesToEven`, which is rounding to nearest ties to even. 
                'TiesAwayFromZero' is rounding to nearest ties away from zero.
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
2077
        self._round_type = round_type
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
            assert op in utils._weight_supported_quantizable_op_type, \
                op + " is not supported for quantization."
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
        self._is_test = None
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            any(pattern in op_node.op().attr("op_namescope") \
                                for pattern in self._skip_pattern)
        elif isinstance(self._skip_pattern, str):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            op_node.op().attr("op_namescope").find(
                                self._skip_pattern) != -1

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
                is_weight = True if var_node.name() in self.persistable_vars \
                    else False

                # if var node is weight and weight_preprocess_func is not None,
2155
                # will insert weight preprocess func
2156
                # to preorocess weight before quantization
2157 2158
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2159 2160
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2161 2162 2163
                    var_node = self._insert_func(graph,
                                                 self._weight_preprocess_func,
                                                 var_node, op)
2164
                elif not is_weight and self._act_preprocess_func is not None:
2165 2166 2167
                    var_node = self._insert_func(graph,
                                                 self._act_preprocess_func,
                                                 var_node, op)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
                        graph, self._weight_quantize_func, var_node, op)
                    processed_vars.append(name)
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2179 2180 2181
                    target_out_node = self._insert_func(graph,
                                                        self._act_quantize_func,
                                                        var_node, op)
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                    processed_vars.append(name)
                    continue

                quant_bits = self._weight_bits if var_node.name() in self.persistable_vars \
                    else self._activation_bits
                quant_type = self._weight_quantize_type if is_weight \
                    else self._activation_quantize_type
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
                    quant_axis = 1 if op.name() in \
                        utils._channelwise_quant_axis1_ops else 0
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
2201 2202
                    is_test=self._is_test,
                    round_type=self._round_type)
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
                quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                    graph, var_node)
                dequant_var_node = insert_quant_pass.insert_dequant_op(
                    graph, quant_var_node, scale_var_node)

                self.dequantized_vars[name] = dequant_var_node
            graph.update_input_link(var_node, dequant_var_node, op)

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            name = var_node.name()
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

    def _is_skip_quant(self, graph, op_node):
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPassV2 to quantize them.
        if op_node.name() in ["mul", "matmul", "matmul_v2"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
        return is_skip

    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph,
                                               op) and self._has_weight(op):
                        self._transform_forward(graph, op)
                t.update()
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


class AddQuantDequantPassV2(object):
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
    op for the quantized ops's inputs.
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 skip_pattern=["skip_quant"],
                 quantizable_op_type=["elementwise_add", "pool2d"],
2310 2311
                 is_full_quantized=False,
                 round_type='TiesToEven'):
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
                quantized. Default is ["elementwise_add", "pool2d"]. 
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
2331 2332 2333 2334
            round_type(str, optional): The method of converting the tensor value float->int.
                Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
                Default is `TiesToEven`, which is rounding to nearest ties to even. 
                'TiesAwayFromZero' is rounding to nearest ties away from zero.
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
        self._skip_pattern = skip_pattern
2357
        self._round_type = round_type
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
                assert op_type in utils._act_supported_quantizable_op_type, \
                    op_type + " is not supported for quantization."
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized:
2411
                        continue
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
2430 2431
                                is_test=self._is_test,
                                round_type=self._round_type)
2432 2433 2434 2435 2436 2437 2438 2439
                            quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                                graph, in_node)
                            dequant_var_node = insert_quant_pass.insert_dequant_op(
                                graph, quant_var_node, scale_var_node)
                            dequantized_vars_map[arg_name] = dequant_var_node
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)
                t.update()
2440 2441 2442 2443 2444 2445

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2446 2447
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

        return graph


class ReplaceFakeQuantDequantPass(object):
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

    def __init__(self, scope, place):
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
        
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_dequant_ops = []

        for op in graph.all_op_nodes():
            if op.name() in _fake_quant_dequant_op_list:
                fake_quant_dequant_ops.append(op)

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
        scale_node = graph._find_node_by_name(op.outputs,
                                              op.output("OutScale")[0])

        quant_axis = op.op().attr("quant_axis") if op.op().has_attr(
            "quant_axis") else -1
        bit_length = op.op().attr("bit_length") if op.op().has_attr(
            "bit_length") else 8
2514 2515
        round_type = op.op().attr("round_type") if op.op().has_attr(
            "round_type") else 0
2516 2517 2518 2519 2520 2521 2522 2523 2524

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
            _init_var_node(zero_point_node,
                           np.zeros(scale_node.shape(), dtype="int32"),
                           self._scope, self._place)

        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            x_node.name()),
                                               var_type=x_node.type(),
                                               shape=x_node.shape(),
                                               var_dtype=x_node.dtype())
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs={
                                                 "quant_axis": quant_axis,
2537 2538
                                                 "bit_length": bit_length,
                                                 "round_type": round_type
2539 2540 2541 2542 2543 2544 2545
                                             },
                                             inputs={
                                                 "X": x_node,
                                                 "Scale": scale_node,
                                                 "ZeroPoint": zero_point_node
                                             },
                                             outputs={"Y": quant_var_node})
2546 2547 2548 2549 2550
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs={
                                                   "quant_axis": quant_axis,
                                                   "bit_length": bit_length
                                               },
                                               inputs={
                                                   "X": quant_var_node,
                                                   "Scale": scale_node,
                                                   "ZeroPoint": zero_point_node
                                               },
                                               outputs={"Y": out_node})
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantWeightPass(object):
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
    
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

    def __init__(self,
                 scope,
                 place,
                 bias_correction=False,
                 quant_bits=8,
                 save_int_weight=True):
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
                scale_node = graph._find_node_by_name(_op.inputs,
                                                      _op.input("Scale")[0])
                zero_point_node = graph._find_node_by_name(
2640 2641
                    _op.inputs,
                    _op.input("ZeroPoint")[0])
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
                out_node = graph._find_node_by_name(_op.outputs,
                                                    _op.output("Y")[0])

                scale_v = self._load_var(scale_node.name())
                assert scale_v.ndim in [1, 2
                                        ], "the dim of scale_v should be 1 or 2"
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
2657 2658
                round_type = _op.op().attr("round_type") if _op.op().has_attr(
                    "round_type") else 0
2659
                quantized_param_v = utils.quant_tensor(param_v.copy(), scale_v,
2660 2661
                                                       quant_axis, bits_length,
                                                       round_type)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
                if self._bias_correction == True:
                    quantized_param_v = utils.bias_correction_w(
                        param_v,
                        quantized_param_v,
                        scale_v,
                        quant_axis,
                        weight_bits=bits_length)
                if self._save_int_weight:
                    # cast weight type to int
                    if self._quant_bits == 8:
                        save_weight_dtype = np.int8
                    quantized_param_v = quantized_param_v.astype(
                        save_weight_dtype)
                self._restore_var(x_node.name(), quantized_param_v)

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)