quantization_pass.py 121.5 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17 18 19 20
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
21
from ..... import compat as cpt
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
32
from ....framework import _get_paddle_place
33
from . import utils
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
]
W
WangZhen 已提交
48

49 50 51 52 53 54 55 56 57
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

58
_fake_quant_dequant_op_list = [
59 60
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
61 62
]

63 64
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

65
_SCALE_DEFAULT_VALUE = 0.001
66 67


68 69 70 71
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
72
        'The scope cannot be set None.'
73
    assert place is not None, \
74
        'The place cannot be set None.'
75 76 77 78
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


79 80 81 82 83
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
84
    for var_name in utils._get_op_input_var_names(op_node):
85 86 87
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
88 89 90
    return is_input_all_not_persistable


91 92 93 94 95 96 97 98 99 100 101 102 103 104
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


105
class QuantizationTransformPass(object):
106
    """
107 108
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
109
    """
110

W
WangZhen 已提交
111
    def __init__(self,
112
                 scope=None,
113
                 place=None,
W
WangZhen 已提交
114 115 116 117
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
118
                 window_size=10000,
119
                 moving_rate=0.9,
120
                 skip_pattern=['skip_quant'],
121 122 123 124 125 126
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
127 128
                 executor=None,
                 is_test=None):
129
        r"""
130
        Constructor.
131

W
WangZhen 已提交
132
        Args:
133
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
134 135
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
136 137 138
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
139
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
140
                the bias is not quantized.
141 142
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
143 144 145 146 147
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
148
            weight_quantize_type(str): quantization type for weights,
149 150 151
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
152 153
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
154
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
155
                will be presented in the name scope of an op. When the skip pattern is
156
                detected in an op's name scope, the corresponding op will not be quantized. 
157
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
158 159
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
187 188
                Default is None.

189

W
WangZhen 已提交
190 191
        Examples:
        .. code-block:: python
192 193 194 195
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
196
            from paddle.fluid.contrib.slim.graph import IrGraph
197 198
            from paddle.fluid import core

199
            graph = IrGraph(core.Graph(program.desc), for_test=False)
200
            place = fluid.CPUPlace()
201
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
202
            place)
203
            transform_pass.apply(graph)
W
WangZhen 已提交
204
        """
205
        self._scope = scope
206
        self._place = _get_paddle_place(place)
207 208
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
209
        self._skip_pattern = skip_pattern
210 211 212 213 214 215
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
216 217 218 219
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
220 221
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
222 223
        if activation_quantize_type not in quant_type:
            raise ValueError(
224 225 226
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
227 228
        if weight_quantize_type not in quant_type:
            raise ValueError(
229
                "Unknown weight_quantize_type: '%s'. It can only be "
230 231
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
232

233 234 235
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
236
        self._moving_rate = moving_rate
W
WangZhen 已提交
237

238 239
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
240
            assert op in utils._weight_supported_quantizable_op_type, \
241
                op + " is not supported for quantization."
242 243
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
244
        ]
245
        self._is_test = is_test
246
        self._global_step = None
W
WangZhen 已提交
247

248 249 250
        self.create_var_map = {}
        self.create_op_map = {}

251
    def apply(self, graph):
252 253 254 255 256 257 258
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
259 260
        Returns:
            None
261
        """
W
WangZhen 已提交
262
        assert isinstance(graph,
263
                          IrGraph), 'graph must be the instance of IrGraph.'
264 265
        if self._is_test is None:
            self._is_test = graph.is_test()
W
WangZhen 已提交
266 267
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
268
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
269
        processed_vars = []
W
WangZhen 已提交
270

271
        def _quant_preprocess(op_node):
272 273 274
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
275 276
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
277 278
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
279 280
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
281

282
            if user_skipped:
283
                op_node.op()._set_attr("skip_quant", True)
284
                op_node.op()._set_attr("with_quant_attr", True)
285

W
WangZhen 已提交
286
        def _transform_forward(graph, op):
287
            op.op()._set_attr("quantization_type", "qat_with_weight")
288
            op.op()._set_attr("with_quant_attr", True)
289 290
            inputs = op.inputs
            for var_node in inputs:
291 292
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
293 294 295
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
296 297 298
                    name = var_node.name()
                    if name in processed_vars:
                        continue
299 300
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
301 302

                    # if var node is weight and weight_preprocess_func is not None,
303
                    # will insert weight preprocess func
304
                    # to preorocess weight before quantization
305 306
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
307 308 309 310 311
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
312 313 314
                        var_node = self._insert_func(graph,
                                                     self._act_preprocess_func,
                                                     var_node, op)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
331
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
332
                        else self._activation_bits
333 334
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
335 336
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
337
                            utils._channelwise_quant_axis1_ops else 0
338 339 340 341 342
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
343 344
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
345
                            graph, var_node, name, quant_bits, quant_type)
346 347
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
348
                    dequantized_vars[name] = dequant_var_node
349
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
350 351 352

        def _transform_backward(graph, op):
            for var_node in op.inputs:
353 354
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
355 356
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
357
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
358

X
XGZhang 已提交
359 360 361 362 363 364 365 366 367 368
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

369
        if not self._is_test:
W
WangZhen 已提交
370
            self._create_global_step(graph)
371
        ops = graph.all_op_nodes()
372 373 374 375 376 377
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
378 379
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
380 381
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
382 383 384 385 386 387 388 389 390
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
391 392
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
393
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
394
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
395
        graph.resolve_hazard()
396
        return graph
W
WangZhen 已提交
397

W
WangZhen 已提交
398
    def _create_global_step(self, graph):
399 400
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
401
            counter_name = cpt.to_text('@STEP_COUNTER@')
402
            for node in graph.all_var_nodes():
W
WangZhen 已提交
403
                if node.name() == counter_name:
404 405
                    self._global_step = node
            if self._global_step is None:
406
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
407 408 409 410
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
411 412
                _init_var_node(global_step_in, np.zeros([1], dtype='int64'),
                               self._scope, self._place)
W
WangZhen 已提交
413 414
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
415
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
416 417
                increment_op = graph.create_op_node(
                    op_type='increment',
418 419 420 421 422
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
423 424
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
425 426 427
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
428

429
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
430 431 432 433
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
434 435
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
436
        elif quant_type == 'range_abs_max':
437
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
438
                                                       quant_bits)
439
        elif quant_type == 'moving_average_abs_max':
440 441
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
442

443
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
444 445 446 447 448 449
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
450
            name=self._quantized_var_name(name),
451 452 453
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
454 455 456 457 458 459 460 461
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.zeros([1], dtype=data_type)
462
        scale_var_node = graph.create_persistable_node(
463
            name=scale_name,
464
            var_type=var_node.type(),
465
            shape=[1],
466
            var_dtype=var_node.dtype())
467 468
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)

W
WangZhen 已提交
469 470
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
471 472 473 474
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
475
            inputs={'X': var_node},
476 477 478 479
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
480 481 482
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
483 484
        return quant_var_node, scale_var_node

485
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
486 487 488 489 490 491
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
492
            name=self._quantized_var_name(name),
493 494 495
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
496

497 498 499 500 501 502 503 504
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
505
        scale_in_node = graph.create_persistable_node(
506
            name=scale_name,
W
WangZhen 已提交
507 508
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
509
            var_dtype=var_node.dtype())
510
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
W
WangZhen 已提交
511 512 513 514 515

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

516
        if not self._is_test:
W
WangZhen 已提交
517
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
518
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
519 520
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
521
                shape=[self._window_size],
522
                var_dtype=var_node.dtype())
523 524
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
525 526 527
            _init_var_node(scales_node,
                           np.zeros([self._window_size], dtype=data_type),
                           self._scope, self._place)
528

529
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
530 531
            outputs['OutScales'] = scales_node
        attrs = {
532
            'window_size': self._window_size,
W
WangZhen 已提交
533
            'bit_length': quant_bits,
534 535
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
536 537 538 539 540 541 542
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

543 544 545 546
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
547

548 549 550
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
551 552 553

        return quant_var_node, scale_out_node

554
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
555 556 557 558
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
559
            name=self._quantized_var_name(name),
560 561 562
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
563 564 565 566 567 568 569 570
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
571
        scale_in_node = graph.create_persistable_node(
572
            name=scale_name,
573 574 575
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
576
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
577 578 579 580 581 582 583 584 585 586

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
587 588
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
589 590
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
591 592 593 594 595
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
596 597 598 599 600 601
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

634 635
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
636 637 638 639 640 641
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
642
            name=self._quantized_var_name(name),
643 644 645
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
646 647 648 649 650 651 652 653 654
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.zeros([var_node.shape()[quant_axis]],
                                   dtype=data_type)
655
        scale_var_node = graph.create_persistable_node(
656
            name=self._quantized_scale_name(name),
657
            var_type=var_node.type(),
658
            shape=[var_node.shape()[quant_axis]],
659
            var_dtype=var_node.dtype())
660
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)
661 662 663 664
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
665
                'quant_axis': quant_axis,
666
                'is_test': self._is_test,
667 668 669
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
670 671 672 673
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
674 675 676 677 678
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
679 680 681 682 683 684 685 686
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
687 688 689
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
690 691 692
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
693 694 695 696
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
697 698 699 700
            inputs={
                'X': var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
701
            outputs={'Out': dequant_var_node})
702 703 704
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
705 706
        return dequant_var_node

707
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
708
                                   quant_bits, quant_axis):
709 710 711 712 713 714 715 716 717 718 719 720 721 722
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
723
                'quant_axis': quant_axis,
724 725
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
726 727 728 729
            inputs={
                'X': var_node,
                'Scales': scale_var_nodes
            },
730 731 732 733 734 735 736
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
817 818 819
                in_node = data(var_node.name() + '_tmp_input',
                               shape=var_node.shape(),
                               dtype='float32')
820
                out_node = func(in_node)
821
                graph.out_node_mapping_table[out_node.name] = var_node.name()
822 823 824 825 826 827 828 829 830 831
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

832 833
        tmp_graph = IrGraph(core.Graph(tmp_program.desc),
                            for_test=graph._for_test)
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
874 875
                graph.all_var_nodes(),
                target_out_node.name() + "@GRAD")
876
            in_node_grad = graph._find_node_by_name(
877 878
                graph.all_var_nodes(),
                target_in_node.name() + "@GRAD")
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
927
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
928
        """
H
handiz 已提交
929
        return "%s@scale" % (var_name)
W
WangZhen 已提交
930

931
    def _is_skip_quant(self, graph, op_node):
932 933 934 935 936 937 938 939 940 941 942 943
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
944 945 946
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
947 948
        return is_skip

W
WangZhen 已提交
949 950

class QuantizationFreezePass(object):
951

W
WangZhen 已提交
952 953 954
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
955
                 bias_correction=False,
W
WangZhen 已提交
956 957
                 weight_bits=8,
                 activation_bits=8,
958
                 round_type='round',
959
                 weight_quantize_type='abs_max',
960
                 quantizable_op_type=None):
961 962
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
963
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
964
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
965 966
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
967 968 969

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
970 971
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
972 973
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
974 975
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
976
            round_type(str, optional): The method of converting the quantized weights
977 978 979
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
980 981 982
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
983 984
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
985
        """
W
WangZhen 已提交
986 987 988 989 990
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
991
        self._bias_correction = bias_correction
992
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
993 994
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
995
        self._round_type = round_type
W
WangZhen 已提交
996
        self._weight_quantize_type = weight_quantize_type
997 998
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
999 1000
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1001
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1002 1003

    def apply(self, graph):
1004 1005 1006 1007 1008
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1009 1010
        Returns:
            None
1011
        """
1012
        # Get input scales in fake quant op and process weights
1013 1014
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1015 1016 1017
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1018
                input_arg_name = op_node.input('X')[0]
1019 1020 1021 1022
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1023 1024
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1025 1026
                        op_node.outputs,
                        op_node.output('OutScale')[0])
1027 1028 1029 1030 1031 1032 1033 1034 1035
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1036
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1037
                        scale_v = scale_v[0]
W
WangZhen 已提交
1038
                    else:
1039
                        scale_v = scale_v.tolist()
1040
                    self._quant_var_scale_map[input_arg_name] = scale_v
1041
                    # Quantize weight and restore
1042
                    if self._round_type == 'round':
1043
                        param_v = self._load_var(input_arg_name)
1044 1045
                        if any(
                                _check_grandchild_op_node(op_node, op)
1046
                                for op in utils._channelwise_quant_axis1_ops):
1047 1048 1049
                            quant_axis = 1
                        else:
                            quant_axis = 0
1050 1051
                        quantized_param_v = utils.quant_tensor(
                            param_v.copy(), scale_v, quant_axis,
1052 1053
                            self._weight_bits)
                        quantized_param_v = np.round(quantized_param_v)
1054
                        # Weight bias correction
1055
                        if self._bias_correction == True:
1056 1057 1058 1059 1060 1061
                            quantized_param_v = utils.bias_correction_w(
                                param_v,
                                quantized_param_v,
                                scale_v,
                                quant_axis,
                                weight_bits=self._weight_bits)
1062
                            quantized_param_v = np.round(quantized_param_v)
1063
                        self._restore_var(input_arg_name, quantized_param_v)
1064
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1065

1066
        # Remove all fake dequant op
1067
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1068 1069 1070 1071 1072
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1073
        # Insert post dequant op
1074
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1075
        for op_node in ops:
1076 1077 1078
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1079
                if self._weight_quantize_type == 'channel_wise_abs_max':
1080
                    quant_axis = 1 if op_node.name() in \
1081
                        utils._channelwise_quant_axis1_ops else 0
1082 1083
                    self._insert_post_channel_dequant_op(
                        graph, op_node, quant_axis)
1084 1085
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1086

1087
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1088 1089
        for op_node in ops:
            for var_node in op_node.inputs:
1090 1091 1092
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1093 1094 1095 1096
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1097
        graph.resolve_hazard()
1098
        return graph
W
WangZhen 已提交
1099 1100

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1101 1102
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1103 1104
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1105
        else:
1106 1107
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1108
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1109

1110
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1111 1112 1113
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1114 1115 1116 1117 1118
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1119 1120 1121
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1122
            scale_v = self._quant_var_scale_map[original_var_name]
1123 1124 1125 1126 1127 1128 1129 1130
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1131
                scale_var_node = self._quant_var_scale_map[original_var_name]
1132

1133
        if len(op_node.output_arg_names()) != 1:
1134 1135 1136
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1137
        output_var_node = graph._find_node_by_name(
1138 1139
            op_node.outputs,
            op_node.output_arg_names()[0])
1140 1141 1142 1143 1144
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1145 1146
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1147 1148
        _init_var_node(weight_scale_node, channel_scale.astype(data_type),
                       self._scope, self._place)
1149 1150 1151 1152 1153
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1154 1155 1156
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1157 1158
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1159 1160 1161 1162
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1163
                'quant_axis': quant_axis,
1164 1165
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1176
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1177 1178
        return dequant_var_node

W
WangZhen 已提交
1179
    def _insert_post_dequant_op(self, graph, op_node):
1180
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1181 1182 1183
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1184
        for var_node in op_node.inputs:
W
WangZhen 已提交
1185
            name = var_node.name()
1186 1187 1188 1189 1190
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1191
                new_in.clear_outputs()
W
WangZhen 已提交
1192 1193
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1194
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1195 1196 1197 1198
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1199
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1200
                max_range *= param_range / scale_v
W
WangZhen 已提交
1201
            else:
1202
                max_range *= act_range
1203
                assert isinstance(scale_v, IrNode)
1204
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1205

1206
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1207 1208 1209
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1210
        output_var_node = graph._find_node_by_name(
1211 1212
            op_node.outputs,
            op_node.output_arg_names()[0])
W
WangZhen 已提交
1213 1214
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1215 1216 1217
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1218 1219
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1220 1221 1222 1223
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
1224 1225 1226 1227
            inputs={
                'X': output_var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
1228 1229 1230 1231
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1232
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1233 1234 1235 1236 1237
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1238 1239 1240
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1241 1242 1243

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1244
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1245 1246 1247 1248 1249 1250
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1251 1252 1253 1254 1255 1256
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
H
handiz 已提交
1269 1270
        if var_name.endswith('@scale'):
            return var_name[:-len('@scale')]
W
WangZhen 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1280
    def _is_float(self, v):
W
WangZhen 已提交
1281 1282 1283
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1284 1285

class ConvertToInt8Pass(object):
1286

1287
    def __init__(self, scope, place, quantizable_op_type=None):
1288 1289 1290 1291 1292
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1293 1294 1295
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1296 1297
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1298
        """
1299 1300 1301 1302 1303
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1304
        self._place = _get_paddle_place(place)
1305 1306

    def apply(self, graph):
1307
        """
T
tianshuo78520a 已提交
1308 1309
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1310 1311 1312

        Args:
            graph(IrGraph): the applied graph.
1313 1314
        Returns:
            None
1315
        """
1316 1317
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1318 1319
        input_map = {}
        for op_node in ops:
1320 1321
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1322 1323 1324 1325
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1326 1327
                            int8_var_node = self._convert_to_int8(
                                graph, var_node)
1328 1329 1330 1331 1332 1333
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1334
        graph.resolve_hazard()
1335 1336 1337 1338
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1339
        int8_var_node = graph.create_persistable_node(
1340
            name=cpt.to_text(int8_var_node_name),
1341 1342
            var_type=var_node.type(),
            shape=var_node.shape(),
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1358
        ops = graph.all_op_nodes()
1359 1360 1361 1362 1363 1364
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1365 1366 1367 1368 1369 1370
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1371 1372 1373 1374
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
1375

1376
    def __init__(self):
1377
        """
T
tianshuo78520a 已提交
1378
        This pass is used to convert the frozen graph for paddle-mobile execution.
1379
        """
1380 1381
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1382 1383

    def apply(self, graph):
1384 1385 1386 1387 1388 1389 1390
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1391 1392
        Returns:
            None
1393
        """
1394
        ops = graph.all_op_nodes()
1395 1396 1397
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1398
                op_node.set_type('quantize')
1399 1400 1401 1402 1403 1404 1405
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1406
                op_node.set_type('dequantize')
1407 1408 1409 1410 1411 1412
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1413
        graph.resolve_hazard()
1414
        return graph
1415 1416


1417
class OutScaleForTrainingPass(object):
1418

1419 1420 1421 1422 1423 1424
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 is_test=None,
                 scale_dict=None):
1425 1426 1427 1428 1429 1430
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1431 1432 1433
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1434 1435 1436
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1437
        self._place = _get_paddle_place(place)
1438
        self._moving_rate = moving_rate
1439
        self._is_test = is_test
1440
        self._teller_set = utils._out_scale_op_list
1441
        self._scale_dict = scale_dict
1442 1443 1444 1445 1446 1447 1448 1449 1450

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1451 1452
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1453 1454
        if self._is_test is None:
            self._is_test = graph.is_test()
1455 1456 1457 1458
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        with tqdm(total=len(target_ops),
                  bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
                    in_node = graph._find_node_by_name(op.outputs,
                                                       output_var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
1469

1470 1471
                    data_type = 'float64' if in_node.dtype() \
                        == core.VarDesc.VarType.FP64 else 'float32'
1472
                    try:
1473
                        scale_node = graph._find_node_by_name(
1474 1475 1476 1477 1478 1479 1480 1481
                            graph.all_var_nodes(),
                            self._scale_name(in_node.name()))
                    except:
                        scale_node = graph.create_persistable_node(
                            name=self._scale_name(in_node.name()),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            shape=[1],
                            var_dtype=in_node.dtype())
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                        if self._scale_dict is not None:
                            try:
                                scale_value = np.array(
                                    [self._scale_dict[in_node.name()]])
                            except:
                                scale_value = np.ones([1], dtype=data_type)
                        else:
                            scale_value = np.ones([1], dtype=data_type)
                        _init_var_node(scale_node, scale_value, self._scope,
                                       self._place)
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(state_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(accum_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        state_out_node = graph.create_var_node_from_desc(
                            state_in_node.var())
                        accum_out_node = graph.create_var_node_from_desc(
                            accum_in_node.var())

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
                        outputs=outs)
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1541 1542 1543 1544 1545 1546
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1547
        return "%s@scale" % (var_name)
1548 1549


1550
class OutScaleForInferencePass(object):
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1561
        self._teller_set = utils._out_scale_op_list
1562 1563 1564 1565 1566 1567 1568 1569 1570

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1571 1572
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1573 1574 1575
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1576
                var_names = utils._get_op_output_var_names(op_node)
1577
                for var_name in var_names:
1578 1579 1580 1581 1582 1583
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1584
                    scale_name = self._scale_name(var_name)
1585 1586 1587 1588 1589 1590 1591
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1592

1593 1594
                    argname_index = utils._get_output_name_index(
                        op_node, var_name)
1595 1596 1597
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1598
                        + "_threshold", float(scale_value))
1599
                    op_node.op()._set_attr("with_quant_attr", True)
1600 1601 1602 1603 1604 1605 1606
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1607
        return "%s@scale" % (var_name)
1608 1609 1610


class AddQuantDequantPass(object):
1611 1612 1613 1614
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1615

1616 1617 1618
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1619 1620 1621 1622 1623
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1624
                 skip_pattern=["skip_quant"],
1625
                 quantizable_op_type=["elementwise_add", "pool2d"],
1626 1627 1628
                 is_full_quantized=False,
                 is_test=None,
                 scale_dict=None):
1629
        """
1630
        Constructor.
1631 1632 1633

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1634 1635 1636
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1637 1638 1639 1640 1641 1642 1643 1644
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1645
                quantized. Default is ["elementwise_add", "pool2d"]. 
1646 1647 1648 1649
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1650 1651
        """
        self._scope = scope
1652
        self._place = _get_paddle_place(place)
1653 1654
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
1655
        self._is_test = is_test
1656
        self._skip_pattern = skip_pattern
1657
        self._scale_dict = scale_dict
1658 1659

        if is_full_quantized:
1660
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1661 1662 1663
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1664
                assert op_type in utils._act_supported_quantizable_op_type, \
1665
                    op_type + " is not supported for quantization."
1666 1667 1668 1669
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1670 1671
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1672 1673 1674

    def apply(self, graph):
        """
1675 1676
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1677

1678 1679
        Args:
            graph(IrGraph): the target graph.
1680 1681
        Returns:
            None
1682 1683 1684
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1685 1686
        if self._is_test is None:
            self._is_test = graph.is_test()
1687 1688
        dequantized_vars_map = collections.OrderedDict()

1689 1690
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized or \
                        (not _is_input_all_not_persistable(graph, op_node)):
                        continue
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
                            quant_var_node, _ = \
                                self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits)
                            dequantized_vars_map[arg_name] = quant_var_node
                        graph.update_input_link(in_node, quant_var_node,
                                                op_node)
            t.update()
1728

1729 1730
        # Backward stage, update input link
        for op_node in all_op_nodes:
1731
            if op_node.name() in self._quantizable_grad_op_type:
1732 1733
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1734 1735
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
1736 1737 1738 1739
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1740 1741 1742 1743 1744 1745 1746
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
1747 1748 1749 1750 1751
        quant_var_node = graph.create_var_node(name="{}.quant_dequant".format(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        scale_name = "{}.quant_dequant@scale".format(var_node.name())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            if self._scale_dict is not None and var_node.name(
            ) in self._scale_dict.keys():
                scale_value = np.array([self._scale_dict[var_node.name()]],
                                       dtype=data_type)
            else:
                scale_value = np.array(
                    self._scope.find_var(scale_name).get_tensor(),
                    dtype=data_type)
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)

1767
        scale_in_node = graph.create_persistable_node(
H
handiz 已提交
1768
            name="{}.quant_dequant@scale".format(var_node.name()),
1769 1770 1771 1772
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())

1773
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
1785 1786
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
1787 1788 1789 1790 1791
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
1792 1793 1794 1795 1796 1797
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843


class InsertQuantizeLinear(object):
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
1844
        moving_rate(float): the rate for 'moving average' method.
1845 1846 1847 1848 1849 1850 1851 1852 1853
        is_test(bool, optional): Whether quantization with training or not. Default is True.
    """

    def __init__(self,
                 place,
                 scope,
                 quant_bits=8,
                 quant_axis=-1,
                 channel_wise=False,
1854
                 moving_rate=0.9,
1855
                 is_test=True):
1856 1857 1858 1859 1860 1861
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test
1862
        self._moving_rate = moving_rate
1863

1864
    def insert_quant_op(self, graph, var_node, var_name=None):
1865
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
1866 1867 1868 1869 1870 1871
        var_name = var_node.name() if not var_name else var_name
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        if self.channel_wise:
            scale_var_shape = var_node.shape()[self.quant_axis]
            scale_var_type = core.VarDesc.VarType.LOD_TENSOR
            init_scale_value = np.zeros(scale_var_shape, dtype=data_type)
        else:
            scale_var_shape = 1
            scale_var_type = var_node.type()
            init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
        scale_var_node = graph.create_persistable_node(
1883
            name=self._quantized_scale_name(var_name),
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
            var_type=scale_var_type,
            shape=[scale_var_shape],
            var_dtype=var_node.dtype())
        _init_var_node(scale_var_node, init_scale_value, self._scope,
                       self._place)

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1897 1898 1899
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1900 1901 1902 1903 1904

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

1905
        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
1906
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1907 1908
        outputs = {"Y": quant_var_node}
        if not self._is_test:
1909 1910
            scale_out_node = graph.create_var_node_from_desc(
                scale_var_node.var())
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())

1932
            outputs["OutScale"] = scale_out_node
1933 1934 1935 1936 1937 1938
            inputs['InState'] = state_in_node
            inputs['InAccum'] = accum_in_node
            outputs['OutState'] = state_out_node
            outputs['OutAccum'] = accum_out_node
            attrs["is_test"] = self._is_test
            attrs['moving_rate'] = self._moving_rate
1939

1940 1941 1942 1943
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)
1944 1945 1946 1947 1948 1949 1950

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
1951 1952 1953 1954
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1974 1975 1976
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1977 1978 1979 1980 1981 1982

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
1983
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1984

1985 1986 1987 1988
        quant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs={"Y": dequant_var_node})
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
H
handiz 已提交
2013
        return "%s@scale" % (var_name)
2014 2015 2016 2017 2018 2019 2020 2021

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


2022
class QuantizationTransformPassV2(QuantizationTransformPass):
2023 2024
    """
    Quantize the ops that have weights. Add quant and dequant ops for
2025
    the quantized ops's inputs. It is used in the new format of quantization.
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
    """

    def __init__(self,
                 scope=None,
                 place=None,
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000,
                 moving_rate=0.9,
                 skip_pattern=['skip_quant'],
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
2044 2045
                 executor=None,
                 is_test=None):
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized. 
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
            assert op in utils._weight_supported_quantizable_op_type, \
                op + " is not supported for quantization."
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
2159
        self._is_test = is_test
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            any(pattern in op_node.op().attr("op_namescope") \
                                for pattern in self._skip_pattern)
        elif isinstance(self._skip_pattern, str):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            op_node.op().attr("op_namescope").find(
                                self._skip_pattern) != -1

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
                is_weight = True if var_node.name() in self.persistable_vars \
                    else False

                # if var node is weight and weight_preprocess_func is not None,
2201
                # will insert weight preprocess func
2202
                # to preorocess weight before quantization
2203 2204
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2205 2206
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2207 2208 2209
                    var_node = self._insert_func(graph,
                                                 self._weight_preprocess_func,
                                                 var_node, op)
2210
                elif not is_weight and self._act_preprocess_func is not None:
2211 2212 2213
                    var_node = self._insert_func(graph,
                                                 self._act_preprocess_func,
                                                 var_node, op)
2214 2215 2216 2217 2218 2219 2220 2221

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
                        graph, self._weight_quantize_func, var_node, op)
2222
                    self.processed_vars.append(name)
2223 2224
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2225 2226 2227
                    target_out_node = self._insert_func(graph,
                                                        self._act_quantize_func,
                                                        var_node, op)
2228
                    self.processed_vars.append(name)
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
                    continue

                quant_bits = self._weight_bits if var_node.name() in self.persistable_vars \
                    else self._activation_bits
                quant_type = self._weight_quantize_type if is_weight \
                    else self._activation_quantize_type
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
                    quant_axis = 1 if op.name() in \
                        utils._channelwise_quant_axis1_ops else 0
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
2247
                    moving_rate=self._moving_rate,
2248
                    is_test=self._is_test)
2249
                quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
2250
                    graph, var_node, var_name=name)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
                dequant_var_node = insert_quant_pass.insert_dequant_op(
                    graph, quant_var_node, scale_var_node)

                self.dequantized_vars[name] = dequant_var_node
            graph.update_input_link(var_node, dequant_var_node, op)

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            name = var_node.name()
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
2288 2289
        if self._is_test is None:
            self._is_test = graph.is_test()
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph,
                                               op) and self._has_weight(op):
                        self._transform_forward(graph, op)
                t.update()
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


class AddQuantDequantPassV2(object):
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
2326
    op for the quantized ops's inputs. It is used in the new format of quantization.
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 skip_pattern=["skip_quant"],
                 quantizable_op_type=["elementwise_add", "pool2d"],
2339 2340
                 is_full_quantized=False,
                 is_test=None):
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
                quantized. Default is ["elementwise_add", "pool2d"]. 
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
        
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
2380
        self._is_test = is_test
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        self._skip_pattern = skip_pattern

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
                assert op_type in utils._act_supported_quantizable_op_type, \
                    op_type + " is not supported for quantization."
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
2410 2411
        if self._is_test is None:
            self._is_test = graph.is_test()
2412 2413 2414 2415 2416 2417 2418 2419
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized:
2436
                        continue
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
2455
                                moving_rate=self._moving_rate,
2456
                                is_test=self._is_test)
2457 2458 2459 2460 2461 2462 2463 2464
                            quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                                graph, in_node)
                            dequant_var_node = insert_quant_pass.insert_dequant_op(
                                graph, quant_var_node, scale_var_node)
                            dequantized_vars_map[arg_name] = dequant_var_node
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)
                t.update()
2465 2466 2467 2468 2469 2470

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2471 2472
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

        return graph


class ReplaceFakeQuantDequantPass(object):
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

    def __init__(self, scope, place):
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
        
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_dequant_ops = []

        for op in graph.all_op_nodes():
            if op.name() in _fake_quant_dequant_op_list:
                fake_quant_dequant_ops.append(op)

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
        scale_node = graph._find_node_by_name(op.outputs,
                                              op.output("OutScale")[0])

        quant_axis = op.op().attr("quant_axis") if op.op().has_attr(
            "quant_axis") else -1
        bit_length = op.op().attr("bit_length") if op.op().has_attr(
            "bit_length") else 8

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
            _init_var_node(zero_point_node,
                           np.zeros(scale_node.shape(), dtype="int32"),
                           self._scope, self._place)

        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            x_node.name()),
                                               var_type=x_node.type(),
                                               shape=x_node.shape(),
                                               var_dtype=x_node.dtype())
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs={
                                                 "quant_axis": quant_axis,
2560
                                                 "bit_length": bit_length
2561 2562 2563 2564 2565 2566 2567
                                             },
                                             inputs={
                                                 "X": x_node,
                                                 "Scale": scale_node,
                                                 "ZeroPoint": zero_point_node
                                             },
                                             outputs={"Y": quant_var_node})
2568 2569 2570 2571 2572
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs={
                                                   "quant_axis": quant_axis,
                                                   "bit_length": bit_length
                                               },
                                               inputs={
                                                   "X": quant_var_node,
                                                   "Scale": scale_node,
                                                   "ZeroPoint": zero_point_node
                                               },
                                               outputs={"Y": out_node})
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantWeightPass(object):
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
    
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

    def __init__(self,
                 scope,
                 place,
                 bias_correction=False,
                 quant_bits=8,
                 save_int_weight=True):
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
                scale_node = graph._find_node_by_name(_op.inputs,
                                                      _op.input("Scale")[0])
                zero_point_node = graph._find_node_by_name(
2662 2663
                    _op.inputs,
                    _op.input("ZeroPoint")[0])
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
                out_node = graph._find_node_by_name(_op.outputs,
                                                    _op.output("Y")[0])

                scale_v = self._load_var(scale_node.name())
                assert scale_v.ndim in [1, 2
                                        ], "the dim of scale_v should be 1 or 2"
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
2679 2680 2681 2682 2683
                quantized_param_v = utils.quant_tensor(param_v.copy(),
                                                       scale_v,
                                                       quant_axis,
                                                       bits_length,
                                                       onnx_format=True)
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
                if self._bias_correction == True:
                    quantized_param_v = utils.bias_correction_w(
                        param_v,
                        quantized_param_v,
                        scale_v,
                        quant_axis,
                        weight_bits=bits_length)
                if self._save_int_weight:
                    # cast weight type to int
                    if self._quant_bits == 8:
                        save_weight_dtype = np.int8
                    quantized_param_v = quantized_param_v.astype(
                        save_weight_dtype)
                self._restore_var(x_node.name(), quantized_param_v)

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)