math.py 174.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27 28 29
from .manipulation import cast
from .creation import _complex_to_real_dtype
from .layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn

30
import paddle
31
from ..static import Variable
32
from ..framework import core, in_dygraph_mode, _non_static_mode, LayerHelper, _in_legacy_dygraph
33
from ..fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
34
from ..framework import _varbase_creator, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
35
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
36
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
37 38 39

# TODO: define math functions
# yapf: disable
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
from .ops import abs    # noqa: F401
from .ops import acos    # noqa: F401
from .ops import asin    # noqa: F401
from .ops import ceil    # noqa: F401
from .ops import ceil_    # noqa: F401
from .ops import cos    # noqa: F401
from .ops import tan    # noqa: F401
from .ops import sinh    # noqa: F401
from .ops import cosh    # noqa: F401
from .ops import exp    # noqa: F401
from .ops import exp_    # noqa: F401
from .ops import expm1    # noqa: F401
from .ops import floor    # noqa: F401
from .ops import floor_    # noqa: F401
from .ops import reciprocal    # noqa: F401
from .ops import reciprocal_    # noqa: F401
from .ops import round    # noqa: F401
from .ops import round_    # noqa: F401
from .ops import rsqrt    # noqa: F401
from .ops import rsqrt_    # noqa: F401
from .ops import square    # noqa: F401
from .ops import atan    # noqa: F401
from .ops import erf    # noqa: F401
from .ops import sqrt    # noqa: F401
from .ops import sqrt_    # noqa: F401
from .ops import sin    # noqa: F401
from .ops import asinh    # noqa: F401
from .ops import acosh    # noqa: F401
from .ops import atanh    # noqa: F401


Z
zhiboniu 已提交
71
from ..fluid.layers import elementwise_sub
72
from paddle import _C_ops, _legacy_C_ops
73

74 75
__all__ = []

76 77 78 79 80 81 82 83 84 85 86 87 88
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

89

90 91
def log(x, name=None):
    r"""
C
Chen Long 已提交
92
    Calculates the natural log of the given input Tensor, element-wise.
93 94 95

    .. math::

96
        Out = \ln(x)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
119 120
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
    inputs = {'X': [x]}
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
    return out


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
148 149 150 151 152 153
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
154 155

    Returns:
C
Chen Long 已提交
156
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    Examples:
        .. code-block:: python
            
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
179
        return _C_ops.scale(x, scale, float(bias), bias_after_scale)
180 181
    if _non_static_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
182
        out = _legacy_C_ops.scale(x, 'scale',
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                           float(_scale), 'bias',
                           float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

    check_variable_and_dtype(x, "x", [
        'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], "scale")
    inputs = {'X': [x]}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = [scale]
    else:
        attrs['scale'] = float(scale)
    helper = LayerHelper('scale', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return helper.append_activation(out)


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
    """
    stanh activation.

    .. math::

214
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

    if _non_static_mode():
237
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh')

    helper = LayerHelper('stanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out

def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
282
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
283

284 285 286 287 288 289 290 291
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
292
            
293 294 295 296
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
297
            res = paddle.multiplex(inputs, index)
298
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
299 300 301

    """
    if _non_static_mode():
302
        return _legacy_C_ops.multiplex(index, inputs)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    helper = LayerHelper('multiplex', **locals())

    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
            "inputs should be a list object with at least 2 elements.")
    for id, x in enumerate(inputs):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'multiplex')
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out

323 324 325 326 327 328
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
329
    if in_dygraph_mode():
330
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
331 332
    if _in_legacy_dygraph():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
333
        return _legacy_C_ops.scale_(x, 'scale',
334 335
                                float(_scale), 'bias',
                                float(bias), 'bias_after_scale', bias_after_scale)
336 337


338
def pow(x, y, name=None):
339
    """
C
Chen Long 已提交
340
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
341

342 343
    .. math::
        out = x^{y} 
344

345 346
    Note:
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
347 348


349 350
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
351
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
352 353
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
354
    Returns:
355
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
356 357 358

    Examples:

359
        ..  code-block:: python
360 361 362

            import paddle

363 364 365 366 367 368 369 370 371 372 373 374
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

375
            # example 2: y is a Tensor
376
            y = paddle.to_tensor([2], dtype='float32')
377
            res = paddle.pow(x, y)
378 379 380
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
381 382

    """
383
    # in dynamic graph mode
384
    if in_dygraph_mode():
385
        if isinstance(y, (int, float)):
386
            return _C_ops.pow(x, y)
387
        elif isinstance(y, (paddle.Tensor, Variable)):
388
            return _C_ops.elementwise_pow(x, y)
389 390
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
391
    if _in_legacy_dygraph():
392
        if isinstance(y, (int, float)):
393
            return _legacy_C_ops.pow(x, 'factor', y)
394
        elif isinstance(y, (paddle.Tensor, Variable)):
395 396
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
397
        else:
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    if isinstance(y, (int, float)):
        helper = LayerHelper('pow', **locals())
        inputs = {'X': x}
        attrs = {'factor': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
        return out
    elif isinstance(y, (paddle.Tensor, Variable)):
        # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
        helper = LayerHelper('elementwise_pow', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
    else:
        raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
415 416


417
OP_NAMEMAPPING = {
418 419 420 421 422 423 424 425
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
426
    'elementwise_mod': 'remainder',
427
}
428

429 430 431 432 433 434 435
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
436 437 438
    def is_inplace(op_name):
        return  op_name[-1] == "_"

439
    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
440
        op = getattr(_legacy_C_ops, op_name)
441
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
W
wanghuancoder 已提交
442 443 444 445 446 447
    else:
        if in_dygraph_mode():
            op = getattr(_C_ops, OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name)
            out = op(x, y)

        if _in_legacy_dygraph():
448
            op = getattr(_legacy_C_ops, op_name)
W
wanghuancoder 已提交
449
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
450 451 452 453 454 455 456 457 458 459

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)

def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

460 461
    out = helper.kwargs.get('out', None)

462 463 464
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
465
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
466 467
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
468
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
469 470 471 472 473
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
474 475 476 477 478 479

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
480 481 482 483 484 485 486 487 488 489 490

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
491
def add(x, y, name=None):
492
    """
493 494 495 496 497 498 499 500
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

501 502
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
503 504

    There are two cases for this operator:
505 506 507 508

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

509
    For case 2:
510 511 512 513

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)−rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
514 515 516 517

        For example:

        ..  code-block:: python
518

519 520 521 522 523 524
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
525

526
    Args:
527 528 529
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
530 531

    Returns:
532
        N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
533 534 535 536

    Examples:

        ..  code-block:: python
537

538
            import paddle
539

540 541 542 543
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
544
    """
545

J
Jiabin Yang 已提交
546
    if in_dygraph_mode():
547
        return _C_ops.add( x, y)
J
Jiabin Yang 已提交
548 549
    else:
        if _in_legacy_dygraph():
550
            return _legacy_C_ops.elementwise_add(x, y)
J
Jiabin Yang 已提交
551 552
        else:
            return _elementwise_op(LayerHelper('elementwise_add', **locals()))
553 554


555 556 557 558 559 560 561 562 563 564 565 566 567
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

568
    if in_dygraph_mode():
569
        return _C_ops.add_(x, y)
570 571 572 573
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
        return out
574 575


576 577
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
578
    Substract two tensors element-wise. The equation is:
579 580 581 582

    .. math::
        out = x - y

583 584
    Note:
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
585 586 587 588 589 590 591 592 593 594 595 596

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
597

598 599 600 601 602 603
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
604 605 606
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
607 608 609 610 611

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
612 613 614
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
615

616 617
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
618 619
            res = paddle.subtract(x, y)
            print(res)
620 621
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
622

623
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
624 625 626
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
627 628
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
629 630 631 632
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
J
Jiabin Yang 已提交
633
    if in_dygraph_mode():
634
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
635 636 637 638 639 640
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
641 642


643 644 645 646 647 648 649 650 651 652 653 654 655
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

656
    if in_dygraph_mode():
657
        return _C_ops.subtract_(x, y)
658 659 660 661
    else:
        out = _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub_')
        return out
662 663


664
def divide(x, y, name=None):
665
    """
666
    Divide two tensors element-wise. The equation is:
667

668 669
    .. math::
        out = x / y
670

671 672
    Note:
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
673

674 675 676 677
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
678

679
    Returns:
680
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
681

682
    Examples:
683

684
        ..  code-block:: python
685

686
            import paddle
687

688 689
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
690
            z = paddle.divide(x, y)
691
            print(z)  # [2., 0.6, 2.]
692

693 694 695 696
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
J
Jiabin Yang 已提交
697
    if in_dygraph_mode():
698
        return _C_ops.divide( x, y)
J
Jiabin Yang 已提交
699 700 701 702 703 704
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            return _elementwise_op(LayerHelper(op_type, **locals()))
705 706


707 708 709
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
710

711 712
    .. math::
        out = x // y
713

714 715
    Note:
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
716

717 718 719 720
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
721

722 723
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
724

725
    Examples:
726

727
        ..  code-block:: python
728

729
            import paddle
730

731 732
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
733
            z = paddle.floor_divide(x, y)
734
            print(z)  # [2, 0, 2, 2]
735

736 737 738
    """
    op_type = 'elementwise_floordiv'
    axis = -1
739
    if paddle.in_dynamic_mode():
740 741
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
742

743
    return _elementwise_op(LayerHelper(op_type, **locals()))
744 745


746
def remainder(x, y, name=None):
747
    r"""
748 749 750
    Mod two tensors element-wise. The equation is:

    .. math::
751

752 753
        out = x \% y

754 755
    Note:
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
756 757

    Args:
W
WangXi 已提交
758 759
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
760 761 762
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
763
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
764 765 766 767 768 769 770

    Examples:

        ..  code-block:: python

            import paddle

771 772
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
773
            z = paddle.remainder(x, y)
W
WangXi 已提交
774
            print(z)  # [0, 3, 2, 1]
775 776 777

    """
    op_type = 'elementwise_mod'
778
    axis = -1
779
    if paddle.in_dynamic_mode():
780
        return _elementwise_op_in_dygraph(
781
            x, y, axis=axis, op_name=op_type)
782 783 784 785

    return _elementwise_op(LayerHelper(op_type, **locals()))


786 787
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
788 789


790
def multiply(x, y, name=None):
791
    """
792
    multiply two tensors element-wise. The equation is:
793

794 795
    .. math::
        out = x * y
796

797 798
    Note:
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
799

800
    Args:
W
will-jl944 已提交
801 802
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
803
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
804

805
    Returns:
806
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
807

808 809 810 811 812 813
    Examples:

        ..  code-block:: python

            import paddle

814 815
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
816
            res = paddle.multiply(x, y)
817
            print(res) # [[5, 12], [21, 32]]
818

819
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
820 821 822
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
823 824 825 826

    """
    op_type = 'elementwise_mul'
    act = None
827
    axis = -1
828

J
Jiabin Yang 已提交
829
    if in_dygraph_mode():
830
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
831 832 833 834 835 836 837 838 839
    else:
        if _in_legacy_dygraph():
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            if x.dtype != y.dtype:
                raise TypeError(
                    'Input tensors must be same type, but received type of x: %s, type of y: %s '
                    % (x.dtype, y.dtype))
840

J
Jiabin Yang 已提交
841
            return _elementwise_op(LayerHelper(op_type, **locals()))
842

843
def maximum(x, y, name=None):
844
    """
W
Wei Shengyu 已提交
845
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
846

847 848
    .. math::
        out = max(x, y)
849

850 851
    Note:
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
893 894
    """
    op_type = 'elementwise_max'
895
    axis = -1
896
    act = None
897
    if paddle.in_dynamic_mode():
898 899 900 901
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

902
def minimum(x, y, name=None):
903
    """
C
Chen Long 已提交
904
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
905

906 907
    .. math::
        out = min(x, y)
908

909 910
    Note:
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
911 912 913 914 915 916 917

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
918
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
952 953
    """
    op_type = 'elementwise_min'
954
    axis = -1
955
    act = None
956
    if paddle.in_dynamic_mode():
957 958 959
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
960

L
LJQ❤️ 已提交
961 962 963 964 965 966 967 968 969
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

970 971
    Note:
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
1017
    if in_dygraph_mode():
1018
        return _C_ops.fmax(x, y, axis)
1019
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1033 1034
    Note:
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
L
LJQ❤️ 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
1080
    if in_dygraph_mode():
1081
        return _C_ops.fmin(x, y, axis)
1082
    if _in_legacy_dygraph():
L
LJQ❤️ 已提交
1083 1084 1085 1086
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

Y
Yang Zhang 已提交
1087

1088
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1089 1090 1091 1092
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1093
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1094 1095
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1096
            Tensor with a single element, otherwise must be in the
1097 1098 1099 1100 1101 1102 1103
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1104
            value is False.
1105
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1106 1107

    Returns:
1108
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1109 1110
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
1111 1112 1113 1114 1115

    Examples:
        .. code-block:: python

            import paddle
1116

1117
            # x is a Tensor with following elements:
1118 1119 1120
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1121 1122
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1123
            out1 = paddle.sum(x)  # [3.5]
1124 1125 1126
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1127

1128
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1129 1130 1131
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1132 1133
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
1134 1135
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1146
    """
1147 1148 1149 1150
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
1151
        axis = []
1152

1153 1154 1155 1156
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1157 1158

    if in_dygraph_mode():
1159
        return _C_ops.sum(x, axis, dtype, keepdim)
F
From00 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168
    if len(axis) == 0:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

F
From00 已提交
1169
    if _in_legacy_dygraph():
1170
        axis = axis if axis != None and axis != [] else [0]
1171
        if dtype_flag:
1172
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1173
                                       'reduce_all', reduce_all_flag, 'in_dtype',
1174
                                       x.dtype, 'out_dtype', dtype)
1175
        else:
1176
            return _legacy_C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
1177
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
1178 1179 1180 1181 1182 1183 1184

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

1185 1186 1187
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
1188
            'out_dtype': dtype
1189
        })
W
wanghuancoder 已提交
1190

1191
    check_variable_and_dtype(
1192
        x, 'x', ['bool', 'float16', 'float32', 'float64',
1193
                'int16', 'int32', 'int64', 'complex64', 'complex128',
1194 1195
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
1196

1197 1198
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

1199 1200 1201
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
1202
            dtype=dtype)
1203
    else:
1204
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1205 1206
    helper.append_op(
        type='reduce_sum',
1207
        inputs={'X': x},
1208 1209 1210
        outputs={'Out': out},
        attrs=attrs)
    return out
1211

1212

W
wangguanqun 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1230
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
            x = np.array([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]]).astype(np.float32)
            x = paddle.to_tensor(x)
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
            y = np.array([[[1, float('nan')], [3, 4]], 
                            [[5, 6], [float('-nan'), 8]]])
            y = paddle.to_tensor(y)
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum')
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
                             'nanmean' )
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

    cnt = paddle.sum(~paddle.isnan(x), axis = axis,keepdim=keepdim)
    return paddle.divide(paddle.nansum(x, axis=axis, keepdim=keepdim, name=name), cnt.astype(x.dtype))


1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """


    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
            if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1404
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1405
def add_n(inputs, name=None):
1406
    """
1407
    Sum one or more Tensor of the input.
S
Steffy-zxf 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1442 1443

    Args:
1444
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1445
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1446
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1447 1448

    Returns:
S
Steffy-zxf 已提交
1449
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1450 1451 1452

    Examples:
        .. code-block:: python
1453

1454 1455
            import paddle

S
Steffy-zxf 已提交
1456 1457 1458 1459 1460
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
1461
    """
1462 1463 1464
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1465 1466
        for x in inputs:
            if not x.is_dense():
1467 1468
                return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
        return _C_ops.add_n(inputs)
1469
    if _in_legacy_dygraph():
S
Steffy-zxf 已提交
1470 1471
        if isinstance(inputs, Variable):
            inputs = [inputs]
1472
        return _legacy_C_ops.sum(inputs, 'use_mkldnn', False)
1473

S
Steffy-zxf 已提交
1474 1475
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1476 1477 1478 1479
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
W
WangXi 已提交
1480
                   ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1481 1482
    else:
        check_variable_and_dtype(inputs, "inputs", \
W
WangXi 已提交
1483
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'add_n')
1484 1485


1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1525
    if in_dygraph_mode():
1526
        return  _C_ops.trunc(input)
1527
    else:
J
Jiabin Yang 已提交
1528
        if _in_legacy_dygraph():
1529
            return _legacy_C_ops.trunc(input)
J
Jiabin Yang 已提交
1530 1531 1532
        else:
            inputs = {"X": input}
            attrs = {}
1533

J
Jiabin Yang 已提交
1534 1535 1536
            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
1537

J
Jiabin Yang 已提交
1538 1539 1540
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1541 1542 1543



W
WuHaobo 已提交
1544
def mm(input, mat2, name=None):
1545
    """
S
swtkiwi 已提交
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1558
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1559
        mat2 (Tensor): The input tensor which is a Tensor.
1560
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1561 1562

    Returns:
N
Noel 已提交
1563
        Tensor: The product Tensor.
1564

W
wawltor 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1597 1598 1599 1600
    Examples:
        .. code-block:: python

            import paddle
1601 1602 1603 1604 1605 1606 1607 1608
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1609

1610
    """
1611
    if in_dygraph_mode():
1612
        return _C_ops.matmul(input, mat2, False, False)
1613
    elif paddle.in_dynamic_mode():
1614
        return _legacy_C_ops.matmul_v2(input, mat2)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1652
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1653
    helper.append_op(
1654
        type='matmul_v2', inputs={'X': input,
1655 1656
                               'Y': mat2}, outputs={'Out': out})
    return out
1657

1658

Y
yaoxuefeng 已提交
1659
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1660 1661 1662
    """
    **addmm**

1663
    Perform matrix multiplication for input $x$ and $y$.
1664 1665 1666 1667 1668 1669 1670 1671 1672
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1673 1674 1675
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1676 1677
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1678
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1679 1680

    Returns:
1681
        Tensor: The output Tensor of addmm.
1682 1683 1684

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1685
            
1686 1687
            import paddle

Y
yaoxuefeng 已提交
1688 1689 1690
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1691

Y
yaoxuefeng 已提交
1692
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1693

N
Noel 已提交
1694
            print(out)
1695 1696 1697
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1698 1699 1700
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1701 1702
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1703 1704
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError("The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(input_shape, x_shape[0], y_shape[1]))
    else:
        raise ValueError("The dimention of input should be 2 or 1 but receive input's shape: {}".format(input_shape))
Y
yaoxuefeng 已提交
1719 1720 1721



J
Jiabin Yang 已提交
1722
    if in_dygraph_mode():
1723
        return _C_ops.addmm( input, x, y, alpha, beta)
J
Jiabin Yang 已提交
1724 1725
    else:
        if _in_legacy_dygraph():
1726
            out = _legacy_C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
J
Jiabin Yang 已提交
1727 1728 1729 1730
            return out
        else:
            inputs = {'Input': input, "X": x, "Y": y}
            attrs = {'Alpha': alpha, 'Beta': beta}
1731

J
Jiabin Yang 已提交
1732 1733 1734 1735 1736
            helper = LayerHelper("addmm", **locals())
            check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
            check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1737

J
Jiabin Yang 已提交
1738 1739 1740
            helper.append_op(
                type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
            return out
1741

S
seemingwang 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
    part, if the p-norm for part i is larger than max-norm, then each element 
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
            
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
            print(y)        
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
    
    """
    input_shape = x.shape
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
    if not axis < len(input_shape):
        raise ValueError("the axis:{} should be less then the shape's size {}:{}".format(axis,len(input_shape),input_shape))
    if not axis >=0:
        if not axis >= -1 * len(input_shape):
            raise ValueError("the axis:{} should not be less than -1 * length of input_shape:{}".format(axis,-1 * len(input_shape)))
        axis = axis + len(input_shape)
S
seemingwang 已提交
1784
    if in_dygraph_mode():
1785
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1786 1787
        return out
    elif _in_legacy_dygraph():
1788
        out = _legacy_C_ops.renorm(x, 'p',p, 'axis',axis, 'max_norm', max_norm)
S
seemingwang 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        return out

    inputs = {'X': x}
    attrs = {'p': p, 'axis': axis, 'max_norm':max_norm}

    helper = LayerHelper("renorm", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out

1801

Z
zhiboniu 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
    
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
1813
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
        dstshape = list(xshape[:-1])+list(yshape[:-1])
        if len(dstshape)==0:
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

1842
        if in_dygraph_mode():
1843
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
1844
        elif paddle.in_dynamic_mode():
1845
            return _legacy_C_ops.matmul_v2(nx, ny.T).reshape(dstshape)
Z
zhiboniu 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(val, name,
                                        ['float16', 'float32', 'float64'], 'inner')
            x_shape = list(xshape)
            y_shape = list(yshape)

            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-1]:
                if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                    raise ValueError(
                        "After performing an optional transpose, Input X's last dim should be "
                        "equal to Y's last dim for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape))

        __check_input(nx, ny)

        helper = LayerHelper('inner', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx,
                                'Y': ny.T}, outputs={'Out': out})
        return out.reshape(dstshape)


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. 
        y (Tensor): An N-D Tensor or a Scalar Tensor. 
1884
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

1906
    if in_dygraph_mode():
1907
        return _C_ops.matmul(nx, ny, False, False)
1908
    elif paddle.in_dynamic_mode():
1909
        return _legacy_C_ops.matmul_v2(nx, ny)
Z
zhiboniu 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'inner')

    __check_input(nx, ny)

    helper = LayerHelper('outer', **locals())
    out = helper.create_variable_for_type_inference(dtype=nx.dtype)
    helper.append_op(
        type='matmul_v2', inputs={'X': nx,
                               'Y': ny}, outputs={'Out': out})
    return out


1927
def logsumexp(x, axis=None, keepdim=False, name=None):
1928
    r"""
1929
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1930

1931
    .. math::
1932
       logsumexp(x) = \log\sum exp(x)
1933

1934
    Args:
S
Shang Zhizhou 已提交
1935 1936
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1953

1954
    Returns:
1955 1956
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1957

1958
    Examples:
1959

1960
    .. code-block:: python
1961

1962 1963
        import paddle

1964
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1965 1966
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1967 1968

    """
1969 1970 1971 1972 1973 1974 1975
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1976

1977 1978 1979
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
1980
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
1981
    if _in_legacy_dygraph():
1982
        return _legacy_C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1983

1984 1985 1986
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1987

1988
    helper = LayerHelper('logsumexp', **locals())
1989
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1990 1991 1992 1993
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1994

S
swtkiwi 已提交
1995

1996 1997
def inverse(x, name=None):
    """
1998 1999 2000 2001 2002
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2003
        x (Tensor): The input tensor. The last two
2004 2005 2006
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2007
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2008 2009

    Returns:
2010
        Tensor: A Tensor holds the inverse of x. The shape and data type
2011
                        is the same as x.
2012 2013 2014 2015 2016

    Examples:
        .. code-block:: python

            import paddle
2017 2018

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2019 2020
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2021 2022

    """
2023
    if in_dygraph_mode():
W
wanghuancoder 已提交
2024
        return _C_ops.inverse(x)
2025 2026
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.inverse(x)
2027

2028 2029
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
2030
                                 ['float32', 'float64'], 'inverse')
2031
        if len(x.shape) < 2:
2032 2033 2034
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
2035 2036
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
2037
    helper = LayerHelper('inverse', **locals())
2038
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2039
    helper.append_op(
2040
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
2041 2042
    return out

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
def _get_reduce_axis(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
    reduce_all = True if axis == None or axis == [] else False
    if axis == None:
        axis = []
    return reduce_all, axis

T
Tao Luo 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
def _get_reduce_all_value(axis):
    """
    Internal function for max, min, amax and amin. 
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    return reduce_all, axis
2078

2079
def max(x, axis=None, keepdim=False, name=None):
2080
    """
S
swtkiwi 已提交
2081

2082
    Computes the maximum of tensor elements over the given axis.
2083

T
Tao Luo 已提交
2084 2085 2086 2087 2088 2089
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.


2090
    Args:
2091 2092
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2093
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2094
            `x` and return a Tensor with a single element,
2095 2096
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2097
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2098
            output Tensor. The result tensor will have one fewer dimension
2099
            than the `x` unless :attr:`keepdim` is true, default
2100
            value is False.
2101
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2102 2103

    Returns:
2104
        Tensor, results of maximum on the specified axis of input tensor,
2105
        it's data type is the same as `x`.
2106 2107 2108

    Examples:
        .. code-block:: python
2109

2110
            import paddle
2111

N
Noel 已提交
2112
            # data_x is a Tensor with shape [2, 4]
2113
            # the axis is a int element
2114
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2115 2116
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2117
            result1 = paddle.max(x)
2118 2119 2120 2121 2122
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2123
            result2 = paddle.max(x, axis=0)
2124 2125 2126 2127 2128
            result2.backward()
            print(result2, x.grad) 
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2129
            result3 = paddle.max(x, axis=-1)
2130 2131 2132 2133 2134
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2135
            result4 = paddle.max(x, axis=1, keepdim=True)
2136 2137 2138
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2139

N
Noel 已提交
2140
            # data_y is a Tensor with shape [2, 2, 2]
2141
            # the axis is list 
2142
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2143 2144
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2145
            result5 = paddle.max(y, axis=[1, 2])
2146 2147 2148 2149 2150
            result5.backward()
            print(result5, y.grad) 
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2151
            result6 = paddle.max(y, axis=[0, 1])
2152 2153 2154
            result6.backward()
            print(result6, y.grad) 
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2155 2156
    """

2157
    reduce_all, axis = _get_reduce_axis(axis)
2158
    if in_dygraph_mode():
2159
        return _C_ops.max(x, axis, keepdim)
2160
    if _in_legacy_dygraph():
2161
        return _legacy_C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
2162
                                   'reduce_all', reduce_all)
2163

2164
    helper = LayerHelper('max', **locals())
2165
    check_variable_and_dtype(
2166
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
2167

2168
    out = helper.create_variable_for_type_inference(
2169
            dtype=x.dtype)
2170 2171
    helper.append_op(
        type='reduce_max',
2172
        inputs={'X': x},
2173 2174
        outputs={'Out': out},
        attrs={
2175 2176
            'dim': axis,
            'keep_dim': keepdim,
2177 2178 2179 2180
            'reduce_all': reduce_all
        })
    return out

2181
def min(x, axis=None, keepdim=False, name=None):
2182
    """
S
swtkiwi 已提交
2183

2184
    Computes the minimum of tensor elements over the given axis
2185

T
Tao Luo 已提交
2186 2187 2188 2189 2190
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

2191
    Args:
2192 2193
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2194
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2195
            `x` and return a Tensor with a single element,
2196 2197
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2198
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2199
            output Tensor. The result tensor will have one fewer dimension
2200
            than the `x` unless :attr:`keepdim` is true, default
2201
            value is False.
2202
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2203

2204
    Returns:
2205
        Tensor, results of minimum on the specified axis of input tensor,
2206
        it's data type is the same as input's Tensor.
2207

2208 2209 2210
    Examples:
        .. code-block:: python

2211
            import paddle
2212

2213
            # data_x is a Tensor with shape [2, 4]
2214
            # the axis is a int element
2215
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2216 2217
                                  [0.1, 0.2, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
2218
            result1 = paddle.min(x)
2219 2220 2221 2222 2223
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2224
            result2 = paddle.min(x, axis=0)
2225 2226 2227 2228 2229
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2230
            result3 = paddle.min(x, axis=-1)
2231 2232 2233 2234 2235
            result3.backward()
            print(result3, x.grad) 
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2236
            result4 = paddle.min(x, axis=1, keepdim=True)
2237 2238 2239
            result4.backward()
            print(result4, x.grad) 
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2240

2241
            # data_y is a Tensor with shape [2, 2, 2]
2242
            # the axis is list 
2243
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2244 2245
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2246
            result5 = paddle.min(y, axis=[1, 2])
2247 2248 2249 2250 2251
            result5.backward()
            print(result5, y.grad) 
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2252
            result6 = paddle.min(y, axis=[0, 1])
2253 2254 2255
            result6.backward()
            print(result6, y.grad) 
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2256
    """
2257

2258
    reduce_all, axis = _get_reduce_axis(axis)
2259
    if in_dygraph_mode():
2260
        return _C_ops.min(x, axis, keepdim)
2261 2262

    if _in_legacy_dygraph():
2263
        return _legacy_C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
2264
                                   'reduce_all', reduce_all)
2265 2266 2267 2268 2269 2270

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
2271
            dtype=x.dtype)
2272 2273
    helper.append_op(
        type='reduce_min',
2274
        inputs={'X': x},
2275 2276
        outputs={'Out': out},
        attrs={
2277 2278
            'dim': axis,
            'keep_dim': keepdim,
2279 2280 2281 2282
            'reduce_all': reduce_all
        })
    return out

T
Tao Luo 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
        amax evenly distributes gradient between these equal values, 
        while max propagates gradient to all of them.

    Args:
2293
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2294
            the dimension is no more than 4.
2295
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2296 2297 2298 2299
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2300
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2301 2302 2303
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2304
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
                                  [0.9, 0.9, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2320 2321 2322 2323 2324
            # There are 5 maximum elements: 
            # 1) amax evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while max propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2325 2326 2327 2328 2329
            result1 = paddle.amax(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2330 2331 2332 2333 2334 2335 2336 2337
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
            print(result1_max, x.grad) 
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2373
    reduce_all, axis = _get_reduce_axis(axis)
2374
    if in_dygraph_mode():
2375
        return _C_ops.amax(x,  axis,  keepdim)
2376
    if _in_legacy_dygraph():
2377
        return _legacy_C_ops.reduce_amax(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
T
Tao Luo 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

    helper = LayerHelper('amax', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
        amin evenly distributes gradient between these equal values, 
        while min propagates gradient to all of them.

    Args:
2407
        x (Tensor): A tensor, the data type is float32, float64, int32, int64, 
2408
            the dimension is no more than 4.
2409
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2410 2411 2412 2413
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2414
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2415 2416 2417
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2418
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
                                  [0.1, 0.1, 0.6, 0.7]], 
                                 dtype='float64', stop_gradient=False)
T
Tao Luo 已提交
2434 2435 2436 2437 2438
            # There are 5 minimum elements: 
            # 1) amin evenly distributes gradient between these equal values, 
            #    thus the corresponding gradients are 1/5=0.2;
            # 2) while min propagates gradient to all of them, 
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2439 2440 2441 2442 2443
            result1 = paddle.amin(x)
            result1.backward()
            print(result1, x.grad) 
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2444 2445 2446 2447 2448 2449 2450 2451
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
            print(result1_min, x.grad) 
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
            print(result2, x.grad) 
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
            print(result3, x.grad) 
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
            print(result4, x.grad) 
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
            # the axis is list 
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
            print(result5, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
            print(result6, y.grad) 
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """

2487
    reduce_all, axis = _get_reduce_axis( axis )
2488
    if in_dygraph_mode():
2489
        return _C_ops.amin(x, axis, keepdim)
2490
    elif _in_legacy_dygraph():
2491
        return _legacy_C_ops.reduce_amin(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all)
T
Tao Luo 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
    helper = LayerHelper('amin', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin')

    out = helper.create_variable_for_type_inference(
            dtype=x.dtype)
    helper.append_op(
        type='reduce_amin',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
        })
    return out

W
WuHaobo 已提交
2509
def log1p(x, name=None):
2510
    r"""
2511
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2512

2513
    .. math::
2514
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2515

2516
    Args:
S
Steffy-zxf 已提交
2517
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
2518 2519
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        
2520
    Returns:
S
Steffy-zxf 已提交
2521
        Tensor, the natural log of the input Tensor computed element-wise.
2522

2523 2524
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2525

2526
            import paddle
S
Steffy-zxf 已提交
2527 2528 2529 2530

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2531 2532
    """

2533
    if in_dygraph_mode():
W
wanghuancoder 已提交
2534
        return _C_ops.log1p(x)
2535 2536
    if _in_legacy_dygraph():
        return _legacy_C_ops.log1p(x)
2537 2538 2539 2540 2541

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
2542
    out = helper.create_variable_for_type_inference(dtype)
2543 2544
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
2545

J
joejiong 已提交
2546
def log2(x, name=None):
2547
    r"""
J
joejiong 已提交
2548 2549 2550 2551
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2552
        Out = \log_2x
J
joejiong 已提交
2553 2554 2555

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2556
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2584
    if in_dygraph_mode():
W
wanghuancoder 已提交
2585
        return _C_ops.log2(x)
2586 2587
    if _in_legacy_dygraph():
        return _legacy_C_ops.log2(x)
J
joejiong 已提交
2588 2589 2590 2591 2592 2593 2594 2595

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
2596

J
joejiong 已提交
2597 2598

def log10(x, name=None):
2599
    r"""
J
joejiong 已提交
2600 2601 2602 2603
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2604
        Out = \log_10_x
J
joejiong 已提交
2605 2606 2607

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2608
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2636
    if in_dygraph_mode():
W
wanghuancoder 已提交
2637
        return _C_ops.log10(x)
2638 2639
    if _in_legacy_dygraph():
        return _legacy_C_ops.log10(x)
J
joejiong 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
2650
def clip(x, min=None, max=None, name=None):
2651
    """
Y
Yang Zhang 已提交
2652
    This operator clip all elements in input into the range [ min, max ] and return
2653 2654 2655 2656
    a resulting tensor as the following equation:

    .. math::

2657
        Out = MIN(MAX(x, min), max)
2658 2659

    Args:
2660
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
2661
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2662
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2663
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2664
            with shape [1] and type ``int32``, ``float32``, ``float64``.
2665
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2666 2667

    Returns:
Y
Yang Zhang 已提交
2668
        Tensor: A Tensor with the same data type and data shape as input.
2669 2670 2671 2672 2673

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2674

2675
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2676 2677
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2678
            print(out1)
Y
Yang Zhang 已提交
2679 2680
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2681
            print(out2)
Y
Yang Zhang 已提交
2682 2683
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2684 2685
    """

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2696

C
chentianyu03 已提交
2697 2698 2699 2700 2701 2702 2703
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2704
        return _C_ops.clip(x, min, max)
C
chentianyu03 已提交
2705 2706

    if _in_legacy_dygraph():
2707 2708 2709 2710
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
2711 2712
        min = min_ if min is None else min
        max = max_ if max is None else max
2713
        return _legacy_C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
2714

2715
    if min is not None:
Y
Yang Zhang 已提交
2716
        check_type(min, 'min', (float, int, Variable), 'clip')
2717 2718
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2719
                        'clip', '(When the type of min in clip is Variable.)')
2720
    if max is not None:
Y
Yang Zhang 已提交
2721
        check_type(max, 'max', (float, int, Variable), 'clip')
2722 2723
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
2724
                        'clip', '(When the type of max in clip is Variable.)')
2725

2726
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
2727 2728

    inputs = {'X': x}
2729
    attrs = {'min': min_, 'max': max_}
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
2743
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
2744
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
2745
        dtype=helper.input_dtype('x'))
2746 2747 2748 2749
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
2750

W
WuHaobo 已提交
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2766 2767

    if in_dygraph_mode():
2768
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2769 2770

    if _in_legacy_dygraph():
2771
        return _legacy_C_ops.clip_(x, "min", min, "max", max)
2772 2773 2774



2775
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2776
    """
S
swtkiwi 已提交
2777

2778
    Computes the sum along diagonals of the input tensor x.
2779 2780

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2781

2782
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2783
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2784
    of the input tensor x.
L
Li Fuchen 已提交
2785

2786
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2787 2788 2789 2790

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2791
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2792

L
Li Fuchen 已提交
2793
    Args:
2794 2795 2796 2797 2798
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2799 2800

    Returns:
2801
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2802 2803 2804 2805 2806

    Examples:
        .. code-block:: python

            import paddle
2807

2808 2809 2810
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2811 2812 2813
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2814
    """
Z
zyfncg 已提交
2815
    def __check_input(x, offset, axis1, axis2):
2816
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
2817 2818 2819
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

2820
        input_shape = list(x.shape)
L
Li Fuchen 已提交
2821
        assert len(input_shape) >= 2,                     \
2822 2823
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
2824 2825
                len(input_shape)

2826 2827
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2828

X
XiangGao 已提交
2829
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
2830 2831
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
2832

X
XiangGao 已提交
2833
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
2834 2835
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
2836 2837


2838 2839 2840
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
2841

H
hong 已提交
2842
    if in_dygraph_mode():
2843
        return _C_ops.trace( x, offset, axis1, axis2 )
H
hong 已提交
2844 2845

    if _in_legacy_dygraph():
2846
        return _legacy_C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
X
XiangGao 已提交
2847

Z
zyfncg 已提交
2848
    __check_input(x, offset, axis1, axis2)
L
Li Fuchen 已提交
2849

Z
zyfncg 已提交
2850
    helper = LayerHelper('trace', **locals())
2851
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
2852 2853 2854

    helper.append_op(
        type='trace',
2855
        inputs={'Input': [x]},
L
Li Fuchen 已提交
2856
        attrs={'offset': offset,
2857 2858
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
2859 2860 2861
        outputs={'Out': [out]})
    return out

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
2877 2878 2879 2880 2881
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
J
Jiabin Yang 已提交
2927
    if in_dygraph_mode():
2928
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
2929 2930
    else:
        if _in_legacy_dygraph():
2931
            return _legacy_C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
2932

Z
zyfncg 已提交
2933
    def __check_input(x, offset, axis1, axis2):
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

Z
zyfncg 已提交
2959
    __check_input(x, offset, axis1, axis2)
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
2973
@templatedoc(op_type="kron")
W
WuHaobo 已提交
2974
def kron(x, y, name=None):
S
swtkiwi 已提交
2975 2976
    """

2977
    ${comment}
F
Feiyu Chan 已提交
2978 2979

    Args:
2980 2981
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
2982
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
2983 2984

    Returns:
2985
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
2986 2987 2988

    Examples:
        .. code-block:: python
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3001
    """
3002
    if _in_legacy_dygraph():
3003
        return _legacy_C_ops.kron(x, y)
3004
    if in_dygraph_mode():
3005
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
3006 3007 3008 3009
    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
3010
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
3011 3012
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
3013 3014 3015 3016


def cumsum(x, axis=None, dtype=None, name=None):
    """
3017 3018
    The cumulative sum of the elements along a given axis. 
    
3019 3020
    Note:
        The first element of the result is the same as the first element of the input. 
3021 3022

    Args:
3023
        x (Tensor): The input tensor needed to be cumsumed.
3024 3025 3026 3027 3028
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3029
        Tensor, the result of cumsum operator. 
3030 3031 3032 3033 3034

    Examples:
        .. code-block:: python
            
            import paddle
3035 3036 3037
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3054
            # paddle.float64
3055 3056 3057 3058 3059 3060
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3061
        x = cast(x, dtype)
3062

H
hong 已提交
3063
    if in_dygraph_mode():
3064
        if axis is None: axis = -1
3065
        return _C_ops.cumsum(x, axis, flatten, False, False)
H
hong 已提交
3066
    if _in_legacy_dygraph():
3067
        if axis is None:
3068
            return _legacy_C_ops.cumsum(x, 'flatten', flatten)
3069
        else:
3070
            return _legacy_C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
3071 3072 3073 3074 3075 3076 3077 3078 3079

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis. 

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
    
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of logcumsumexp operator. 

    Examples:
        .. code-block:: python
            
            import paddle
            
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
            
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
        if axis is None: axis = -1
3139
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3140 3141
    if _in_legacy_dygraph():
        if axis is None:
3142
            return _legacy_C_ops.logcumsumexp(x, 'flatten', flatten)
3143
        else:
3144
            return _legacy_C_ops.logcumsumexp(x, 'axis', axis, 'flatten', flatten)
3145 3146 3147 3148 3149 3150 3151 3152 3153

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "logcumsumexp")

    helper = LayerHelper('logcumsumexp', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logcumsumexp', inputs={'X': x}, outputs={'Out': out}, attrs={'axis': axis, 'flatten': flatten})
    return out


H
hlygit66666 已提交
3154 3155 3156 3157
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3158 3159
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3160 3161 3162 3163 3164

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
3165
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3202
        x = cast(x, dtype)
H
hlygit66666 已提交
3203

3204
    if in_dygraph_mode():
3205
        return _C_ops.cumprod(x, dim)
3206
    if _in_legacy_dygraph():
3207
        return _legacy_C_ops.cumprod(x, 'dim', dim)
H
hlygit66666 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3233

3234
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3235
            out = paddle.isfinite(x)
N
Noel 已提交
3236
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3237
    """
H
hong 已提交
3238
    if in_dygraph_mode():
3239
        return _C_ops.isfinite( x )
H
hong 已提交
3240
    if _in_legacy_dygraph():
3241
        return _legacy_C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3264

3265
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3266
            out = paddle.isinf(x)
N
Noel 已提交
3267
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3268
    """
H
hong 已提交
3269
    if in_dygraph_mode():
3270
        return _C_ops.isinf( x )
H
hong 已提交
3271
    if _in_legacy_dygraph():
3272
        return _legacy_C_ops.isinf_v2(x)
J
Jack Zhou 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3295
            
3296
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3297
            out = paddle.isnan(x)
N
Noel 已提交
3298
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3299
    """
H
hong 已提交
3300
    if in_dygraph_mode():
3301
        return _C_ops.isnan( x )
H
hong 已提交
3302 3303

    if _in_legacy_dygraph():
3304
        return _legacy_C_ops.isnan_v2(x)
J
Jack Zhou 已提交
3305 3306 3307 3308 3309 3310 3311
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
3312 3313 3314 3315 3316
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3317 3318
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
G
guofei 已提交
3319 3320 3321
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3322 3323
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3324
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
G
guofei 已提交
3325 3326 3327
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
3328
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3329 3330 3331

    Returns:
        Tensor, result of product on the specified dim of input tensor.
J
Jack Zhou 已提交
3332
    
G
guofei 已提交
3333 3334 3335 3336 3337 3338
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3339 3340
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3357 3358
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3369
            x = cast(x, dtype)
G
guofei 已提交
3370

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
    dim = axis
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, tuple):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".
                format(type(dim)))
3381 3382 3383 3384 3385

    reduce_all = True if dim is None or len(dim) == 0 or len(dim) == len(x.shape) else False
    if dim is None or len(dim) == 0:
        dim = [0]

3386
    if in_dygraph_mode():
3387
        return _C_ops.reduce_prod(x, dim, keepdim, reduce_all)
3388
    if _in_legacy_dygraph():
3389
        return _legacy_C_ops.reduce_prod(
3390
            x, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', reduce_all)
3391 3392 3393

    helper = LayerHelper('reduce_prod', **locals())
    check_variable_and_dtype(
3394
        x, 'x/input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod')
3395 3396 3397
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_prod',
3398
        inputs={'X': x},
3399 3400
        outputs={'Out': out},
        attrs={
3401 3402 3403
            'dim': dim,
            'keep_dim': keepdim,
            'reduce_all': reduce_all
3404 3405
        })
    return out
W
WangXi 已提交
3406 3407 3408 3409


def sign(x, name=None):
    """
3410
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3411 3412

    Args:
3413 3414
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3424
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3425 3426 3427
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3428
    if in_dygraph_mode():
3429
        return _C_ops.sign(x)
H
hong 已提交
3430 3431

    if _in_legacy_dygraph():
3432
        return _legacy_C_ops.sign(x)
W
WangXi 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
3444
    r"""
W
WangXi 已提交
3445 3446 3447
    Tanh Activation Operator.

    .. math::
3448
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3463
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3464
            out = paddle.tanh(x)
N
Noel 已提交
3465
            print(out)
W
WangXi 已提交
3466 3467
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3468
    if in_dygraph_mode():
3469
        return _C_ops.tanh( x )
H
hong 已提交
3470 3471

    if _in_legacy_dygraph():
3472
        return _legacy_C_ops.tanh(x)
W
WangXi 已提交
3473 3474

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
3475
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
3476 3477 3478 3479
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
3480

3481
@inplace_apis_in_dygraph_only
3482 3483 3484 3485 3486
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3487
    if in_dygraph_mode():
3488 3489
        return _C_ops.tanh_( x )
    return _legacy_C_ops.tanh_(x)
3490 3491


S
Steffy-zxf 已提交
3492 3493
def increment(x, value=1.0, name=None):
    """
3494
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3495 3496 3497 3498
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3499
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3515
    if in_dygraph_mode():
3516
        return _C_ops.increment_(x, value)
H
hong 已提交
3517 3518

    if _in_legacy_dygraph():
3519
        return _legacy_C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
3530 3531 3532 3533


def all(x, axis=None, keepdim=False, name=None):
    """
3534
    Computes the ``logical and`` of tensor elements over the given dimension.
3535 3536 3537 3538 3539

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3540
            Tensor with a single element, otherwise must be in the
3541 3542 3543 3544 3545 3546
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3547
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3548 3549 3550 3551 3552 3553 3554 3555

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3556

N
Noel 已提交
3557
            # x is a bool Tensor with following elements:
3558 3559
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3560
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3561
            print(x)
S
syyxsxx 已提交
3562
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3563

3564 3565 3566
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3567

3568 3569 3570
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3571 3572

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3573 3574
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3575 3576 3577

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3592 3593 3594
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3595
        return _C_ops.all(x, axis, keepdim)
3596 3597

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3598
        axis = axis if axis != None and axis != [] else [0]
3599
        return _legacy_C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3600 3601
                                       'reduce_all', reduce_all_flag)

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3624
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3625 3626 3627 3628 3629

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3630
            Tensor with a single element, otherwise must be in the
3631 3632 3633 3634 3635 3636
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3637
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3638 3639 3640 3641 3642 3643 3644 3645

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3646 3647 3648

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3649
            print(x)
S
syyxsxx 已提交
3650
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3651 3652 3653 3654
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3655 3656 3657
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3658

3659 3660
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3661
            print(out2)
C
Chen Long 已提交
3662 3663

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3664
            out3 = paddle.any(x, axis=-1)  # [True, True]
3665
            print(out3)
C
Chen Long 已提交
3666 3667 3668 3669

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
            print(out4) 
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

3683 3684 3685
    if in_dygraph_mode():
        if reduce_all_flag:
            axis = range(len(x.shape))
3686
        return _C_ops.any(x, axis, keepdim)
3687 3688

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
3689
        axis = axis if axis != None and axis != [] else [0]
3690
        return _legacy_C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
3691 3692
                                       'reduce_all', reduce_all_flag)

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3739 3740 3741 3742 3743 3744

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
C
Chen Long 已提交
3745
        x (Tensor): The input Tensor which hold the complex numbers. 
3746
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
3747
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3748 3749

    Returns:
C
Chen Long 已提交
3750
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3751 3752 3753 3754 3755

    Examples:
        .. code-block:: python

          import paddle
C
Chen Long 已提交
3756
          
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3768
    if in_dygraph_mode():
3769
        return _C_ops.conj(x)
H
hong 已提交
3770

Z
zhiboniu 已提交
3771
    if paddle.in_dynamic_mode():
3772
        return _legacy_C_ops.conj(x)
3773 3774 3775 3776 3777 3778 3779 3780 3781

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
3782

Z
zyfncg 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3792
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3809
    if in_dygraph_mode():
3810
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3811 3812
    else:
        if _in_legacy_dygraph():
3813
            return _legacy_C_ops.digamma(x)
Z
zyfncg 已提交
3814 3815 3816 3817 3818 3819 3820

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
3848 3849
    elif _in_legacy_dygraph():
        return _legacy_C_ops.lgamma(x)
3850 3851 3852 3853 3854 3855 3856 3857

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
    helper = LayerHelper('lgamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
    return out


3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

Z
zhiboniu 已提交
3880
    return scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
3881

3882
def atan2(x, y, name=None):
R
ronnywang 已提交
3883
    r"""
3884
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
3885 3886 3887 3888

    Equation:
        .. math::

3889 3890 3891 3892 3893 3894 3895 3896
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
3897 3898

    Args:
3899 3900
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
3901 3902 3903 3904 3905 3906 3907 3908
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

3909
            import paddle
R
ronnywang 已提交
3910

3911 3912 3913
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
3914

3915 3916 3917
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
3918

3919 3920 3921
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
3922 3923 3924

    """

J
Jiabin Yang 已提交
3925
    if in_dygraph_mode():
3926
        return _C_ops.atan2( x, y)
R
ronnywang 已提交
3927
    else:
J
Jiabin Yang 已提交
3928
        if _in_legacy_dygraph():
3929
            return _legacy_C_ops.atan2(x, y)
J
Jiabin Yang 已提交
3930 3931 3932
        else:
            check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
            check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
3933

J
Jiabin Yang 已提交
3934 3935 3936 3937 3938 3939
            helper = LayerHelper('atan2', **locals())
            inputs = {'X1' : x, 'X2' : y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                    type='atan2', inputs=inputs, outputs={'Out': out})
            return out
A
andyjpaddle 已提交
3940

W
wangzhen38 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
3984
    if _in_legacy_dygraph():
3985
        return _legacy_C_ops.logit(x, 'eps', eps)
3986
    if in_dygraph_mode():
3987
        return _C_ops.logit(x, eps)
W
wangzhen38 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4008 4009 4010
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4024
            out = paddle.lerp(x, y, 0.5)
4025
            # out: [5.5, 6., 6.5, 7.]
4026 4027

    """
H
hong 已提交
4028
    if in_dygraph_mode():
4029
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
H
hong 已提交
4030 4031 4032
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)

4033
        return _C_ops.lerp( x, y, weight)
H
hong 已提交
4034
    if _in_legacy_dygraph():
4035 4036
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
4037
        return _legacy_C_ops.lerp(x, y, weight)
4038

4039 4040 4041
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
4066
    if in_dygraph_mode():
4067 4068
        return _C_ops.lerp_( x, y, weight)
    return _legacy_C_ops.lerp_(x, y, weight)
4069

W
wuhuanzhou 已提交
4070 4071
def erfinv(x, name=None):
    r"""
4072
    The inverse error function of x.
W
wuhuanzhou 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

    Equation:
        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4096
    if in_dygraph_mode():
4097
        return _C_ops.erfinv( x )
H
hong 已提交
4098

W
wuhuanzhou 已提交
4099 4100
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

Z
zhiboniu 已提交
4101
    if paddle.in_dynamic_mode():
4102
        return _legacy_C_ops.erfinv(x)
W
wuhuanzhou 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4116
    if in_dygraph_mode():
4117 4118
        return _C_ops.erfinv_( x )
    return _legacy_C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4119

4120
def rad2deg(x, name=None):
4121
    r"""
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4162 4163 4164
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4165
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4166
    elif paddle.in_dynamic_mode():
4167 4168
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4169
        return _legacy_C_ops.scale(x, 'scale', rad2deg_scale)
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
4184
    r"""
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4219 4220 4221
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4222
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4223
    elif paddle.in_dynamic_mode():
4224 4225
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4226
        return _legacy_C_ops.scale(x, 'scale', deg2rad_scale)
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
4239

T
Tao Luo 已提交
4240 4241 4242 4243 4244 4245 4246 4247
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4248 4249
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4250
    Args:
T
Tao Luo 已提交
4251 4252
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4269
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

Z
zhiboniu 已提交
4307
    if paddle.in_dynamic_mode():
T
Tao Luo 已提交
4308 4309 4310 4311 4312
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4313 4314
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4326 4327
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4328
    Args:
T
Tao Luo 已提交
4329 4330
        x (Tensor): An N-D Tensor, the data type is int32,int64. 
        y (Tensor): An N-D Tensor, the data type is int32,int64. 
T
Tao Luo 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4347
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
4388 4389
        x (Tensor): The input tensor to compute the forward difference on
        n (int, optional): The number of times to recursively compute the difference. 
A
andyjpaddle 已提交
4390
                          Only support n=1. Default:1
4391 4392
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
A
andyjpaddle 已提交
4393 4394
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4395
        append (Tensor, optional): The tensor to append to input along axis before computing the difference, 
A
andyjpaddle 已提交
4396 4397
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
4398
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
A
andyjpaddle 已提交
4399 4400 4401 4402 4403 4404 4405 4406
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4407

A
andyjpaddle 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4440
    if in_dygraph_mode():
A
andyjpaddle 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4453
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4466
        input_front = _C_ops.slice(new_input, axes, starts_1, ends_1, infer_flags,
4467
                                            [])
A
andyjpaddle 已提交
4468 4469 4470 4471
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4472
        input_back = _C_ops.slice(new_input, axes, starts_2, ends_2, infer_flags,
4473
                                            [])
4474 4475

        if x.dtype == paddle.bool:
4476
            return _C_ops.logical_xor(input_back, input_front)
4477
        else:
4478
            return _C_ops.subtract(input_back, input_front)
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
    elif _in_legacy_dygraph():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _varbase_creator()
4493
            _legacy_C_ops.concat(input_list, new_input, 'axis', axis)
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4506
        input_front = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4507 4508 4509 4510 4511
                'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4512
        input_back = _legacy_C_ops.slice(new_input, None, None, None, None, 'axes', axes, \
4513
                'infer_flags', infer_flags, *attrs_2)
A
andyjpaddle 已提交
4514 4515

        if x.dtype == paddle.bool:
4516
            return _legacy_C_ops.logical_xor(input_back, input_front)
A
andyjpaddle 已提交
4517
        else:
4518
            return elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
Z
zhiboniu 已提交
4569
            out = elementwise_sub(input_back, input_front, axis=axis)
A
andyjpaddle 已提交
4570 4571

        return out
F
Feiyu Chan 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4588
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

W
WangZhen 已提交
4612
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4613
        return _C_ops.angle(x)
4614 4615
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.angle(x)
F
Feiyu Chan 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4627

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
def heaviside(x, y, name=None):
    """
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
                \\begin{array}{lcl}
                0,& &\\text{if} \ x < 0, \\\\
                y,& &\\text{if} \ x = 0, \\\\
                1,& &\\text{if} \ x > 0.
                \end{array}
            \\right.

4642
    Note:
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
     """
    op_type = 'elementwise_heaviside'
    axis = -1
    act = None
    if _non_static_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

4675 4676 4677 4678 4679 4680
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4681
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4682 4683 4684 4685 4686

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4687
        .. code-block:: python
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710

            import paddle
            import numpy as np

            input = paddle.rand([3, 3], 'float32')
            print(input.numpy())
            # [[ 1.2203873  -1.0035421  -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-1.5131804   0.5850153  -0.17597814]]

            output = paddle.frac(input)
            print(output.numpy())
            # [[ 0.22038734 -0.00354207 -0.35193074]
            #  [-0.00928353  0.58917075 -0.8407828 ]
            #  [-0.5131804   0.5850153  -0.17597814]]
    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if x.dtype not in [paddle.int32, paddle.int64, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(x.dtype))
    if in_dygraph_mode():
4711 4712
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4713 4714
    else:
        if _in_legacy_dygraph():
4715
            y = _legacy_C_ops.trunc(x)
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
            return _elementwise_op_in_dygraph(
                x, y, axis=axis, act=act, op_name=op_type)
        else:
            inputs = {"X": x}
            attrs = {}

            helper = LayerHelper("trunc", **locals())
            check_variable_and_dtype(x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc')
            y = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y})
            return _elementwise_op(LayerHelper(op_type, **locals()))
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769


def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
    if x.dtype not in [paddle.float16, paddle.float32, paddle.float64, paddle.complex64, paddle.complex128]:
        raise TypeError(
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
                .format(x.dtype))
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)