rnn.py 64.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from functools import reduce
F
Feiyu Chan 已提交
17

18
import numpy as np
F
Feiyu Chan 已提交
19 20 21 22
import paddle
from paddle import framework
from paddle.nn import functional as F
from paddle.nn import initializer as I
23 24
from paddle.nn import Layer
from .container import LayerList
F
Feiyu Chan 已提交
25
from paddle.fluid.layers import utils
26
from paddle.fluid.layers.utils import flatten, map_structure
27
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
28
from paddle import in_dynamic_mode
29
from paddle.fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
30 31 32
from paddle.framework import core
from paddle.static import default_startup_program
from paddle.static import program_guard
33

34
from collections.abc import Sequence
Z
zhiboniu 已提交
35

36 37
__all__ = []

F
Feiyu Chan 已提交
38 39 40 41 42 43

def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

44
    Parameters:
F
Feiyu Chan 已提交
45 46
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
47 48 49 50 51 52 53 54 55 56 57
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
58
            `state_components` is 2.
59
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
60 61 62
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
63

F
Feiyu Chan 已提交
64
    Returns:
65 66 67
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
68 69 70 71
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
72
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
94
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
95 96
    compact form.

97
    Parameters:
98 99 100 101
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
102 103 104
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
105 106 107 108 109
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
110 111 112
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
113

F
Feiyu Chan 已提交
114 115 116
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
117 118 119 120
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
121
        RNN network.
122

F
Feiyu Chan 已提交
123 124 125 126 127 128 129 130
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
131
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
132 133 134 135 136 137 138 139 140


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

141 142 143
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
144 145 146
        r"""
        Generate initialized states according to provided shape, data type and
        value.
147 148

        Parameters:
149 150 151
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
152
                treated as batch size.
153 154 155 156
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
157
                None.
158 159 160 161 162
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
163
                used. Defaults to None.
164
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
165
                Defaults to 0.
166
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
167
                dimension of the of `batch_ref` represents batch. Defaults to 0.
168

F
Feiyu Chan 已提交
169
        Returns:
170
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
171 172 173 174 175 176 177 178
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
179 180 181 182
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
183 184 185 186
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
187
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
188

189
        class Shape:
F
Feiyu Chan 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
210 211 212 213 214 215 216 217 218 219
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
220 221 222 223 224 225 226
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
227
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
228 229 230 231 232 233 234
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
235 236
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
251 252
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
253 254 255 256


class SimpleRNNCell(RNNCellBase):
    r"""
257
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
258 259 260 261 262
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
263
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
264

F
Feiyu Chan 已提交
265
        y_{t} & = h_{t}
266

267
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
268

269
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
270
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
271

272
    Parameters:
F
Feiyu Chan 已提交
273 274
        input_size (int): The input size.
        hidden_size (int): The hidden size.
275
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
276
            It can be `tanh` or `relu`. Defaults to `tanh`.
277
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
278
            :math:`weight_ih`. Default: None.
279
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
280
            :math:`weight_hh`. Default: None.
281
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
282
            :math:`bias_ih`. Default: None.
283
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
284
            :math:`bias_hh`. Default: None.
285
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
286 287
            None). For more information, please refer to :ref:`api_guide_Name`.

288 289 290 291 292
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
293

F
Feiyu Chan 已提交
294
    Inputs:
295 296
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
297 298

    Returns:
299 300
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
301

F
Feiyu Chan 已提交
302
    Notes:
303
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
304 305 306 307 308 309 310 311 312 313 314 315

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
316 317 318
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
319 320 321

    """

322 323 324 325 326 327 328 329 330 331 332
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
333
        super().__init__()
334 335
        if hidden_size <= 0:
            raise ValueError(
336 337 338 339
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
340 341 342 343
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
344 345
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
346 347 348
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
349 350
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
351
        self.bias_ih = self.create_parameter(
352
            (hidden_size,),
F
Feiyu Chan 已提交
353 354
            bias_ih_attr,
            is_bias=True,
355 356
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
357
        self.bias_hh = self.create_parameter(
358
            (hidden_size,),
F
Feiyu Chan 已提交
359 360
            bias_hh_attr,
            is_bias=True,
361 362
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
363 364 365 366 367 368

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
369 370
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
371
        self.activation = activation
372
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
389
        return (self.hidden_size,)
F
Feiyu Chan 已提交
390

391 392
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
393
        if self.activation != "tanh":
394 395 396
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
397 398 399

class LSTMCell(RNNCellBase):
    r"""
400
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
401 402 403 404 405 406
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
407

F
Feiyu Chan 已提交
408
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
409

F
Feiyu Chan 已提交
410
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
411 412 413 414 415 416 417

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
418 419
        y_{t} & = h_{t}

420
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
421 422 423 424 425
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

426
    Parameters:
F
Feiyu Chan 已提交
427 428
        input_size (int): The input size.
        hidden_size (int): The hidden size.
429
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
430
            `weight_ih`. Default: None.
431
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
432
            `weight_hh`. Default: None.
433
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
434
            `bias_ih`. Default: None.
435
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
436
            `bias_hh`. Default: None.
437
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
438 439
            None). For more information, please refer to :ref:`api_guide_Name`.

440 441 442 443 444
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
445 446

    Inputs:
447
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
448
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
449 450

    Returns:
451 452
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
453 454

    Notes:
455 456
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
457
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

472 473 474 475 476 477 478 479
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
480 481
    """

482 483 484 485 486 487 488 489 490 491
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
492
        super().__init__()
493 494
        if hidden_size <= 0:
            raise ValueError(
495 496 497 498
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
499 500 501 502
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
503 504
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
505 506 507
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
508 509
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
510
        self.bias_ih = self.create_parameter(
511
            (4 * hidden_size,),
F
Feiyu Chan 已提交
512 513
            bias_ih_attr,
            is_bias=True,
514 515
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
516
        self.bias_hh = self.create_parameter(
517
            (4 * hidden_size,),
F
Feiyu Chan 已提交
518 519
            bias_hh_attr,
            is_bias=True,
520 521
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
552 553 554
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
555 556
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
557
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
558

559 560 561
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
562 563 564

class GRUCell(RNNCellBase):
    r"""
565
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
566 567 568 569
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

570
    ..  math::
F
Feiyu Chan 已提交
571

572
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
573

574
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
575

576
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
577 578 579

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
580
        y_{t} & = h_{t}
581 582

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
583 584 585 586 587 588
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
589
        input_size (int): The input size.
F
Feiyu Chan 已提交
590
        hidden_size (int): The hidden size.
591
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
592
            `weight_ih`. Default: None.
593
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
594
            `weight_hh`. Default: None.
595
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
596
            `bias_ih`. Default: None.
597
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
598
            `bias_hh`. Default: None.
599
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
600 601
            None). For more information, please refer to :ref:`api_guide_Name`.

602 603 604 605 606
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
607 608

    Inputs:
609 610
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
611 612

    Returns:
613 614
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
615

F
Feiyu Chan 已提交
616
    Notes:
617 618
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
619
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

633 634 635 636 637 638
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
639 640
    """

641 642 643 644 645 646 647 648 649 650
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
651
        super().__init__()
652 653
        if hidden_size <= 0:
            raise ValueError(
654 655 656 657
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
658 659 660 661
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
662 663
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
664 665 666
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
667 668
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
669
        self.bias_ih = self.create_parameter(
670
            (3 * hidden_size,),
F
Feiyu Chan 已提交
671 672
            bias_ih_attr,
            is_bias=True,
673 674
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
675
        self.bias_hh = self.create_parameter(
676
            (3 * hidden_size,),
F
Feiyu Chan 已提交
677 678
            bias_hh_attr,
            is_bias=True,
679 680
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
716
        return (self.hidden_size,)
F
Feiyu Chan 已提交
717

718 719 720
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
721 722 723

class RNN(Layer):
    r"""
724 725
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
726 727
    length of `inputs`.

728
    Parameters:
F
Feiyu Chan 已提交
729 730 731 732 733 734 735
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
736 737 738
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
739
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
740 741

    Returns:
742 743
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
744

F
Feiyu Chan 已提交
745 746
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
747 748
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

764 765 766 767 768 769
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
770 771 772
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
773
        super().__init__()
F
Feiyu Chan 已提交
774 775 776 777 778 779 780
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

781 782 783
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
784 785 786 787 788 789 790
        final_outputs, final_states = paddle.fluid.layers.rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
791 792
            **kwargs
        )
F
Feiyu Chan 已提交
793 794 795 796 797
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
798 799 800
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
801 802
    along the last axis.

803
    Parameters:
F
Feiyu Chan 已提交
804 805 806 807 808 809
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
810 811 812 813
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
814 815

    Outputs:
816
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
817
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
818 819

    Notes:
820 821 822
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

838 839 840 841 842 843
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
844 845 846
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
847
        super().__init__()
F
Feiyu Chan 已提交
848 849 850
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
851 852 853 854 855 856
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
857 858 859 860 861 862
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

863 864 865
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
866
        if isinstance(initial_states, (list, tuple)):
867 868 869
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
870

871
        outputs, final_states = paddle.fluid.layers.birnn(
872 873 874 875 876 877 878 879
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
            **kwargs
        )
F
Feiyu Chan 已提交
880 881 882
        return outputs, final_states


883
class RNNBase(LayerList):
F
Feiyu Chan 已提交
884
    r"""
885 886
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
887 888
    """

889 890 891 892 893 894 895 896 897 898 899 900 901 902
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
903
        super().__init__()
904
        bidirectional_list = ["bidirectional", "bidirect"]
905 906 907 908
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
909
        self.num_directions = 2 if direction in bidirectional_list else 1
910 911 912 913 914 915 916 917
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
918
            "bias_hh_attr": bias_hh_attr,
919 920 921 922 923 924 925 926 927 928
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

929 930
        if direction in ["forward"]:
            is_reverse = False
931 932 933 934 935
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
936
        elif direction in bidirectional_list:
937 938 939 940 941 942 943 944 945
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
946
                "direction should be forward or bidirect (or bidirectional), "
947 948
                "received direction = {}".format(direction)
            )
949

950
        self.could_use_cudnn = True
951
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
952 953
            2 if direction in bidirectional_list else 1
        )
954 955 956 957 958 959 960 961 962 963 964

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
965
                if bias_ih_attr is not False:
966
                    param_names.append('bias_ih_l{}{}')
967
                if bias_hh_attr is not False:
968
                    param_names.append('bias_hh_l{}{}')
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
989 990 991 992 993
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
994 995 996 997 998 999 1000
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1001 1002 1003 1004 1005
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1006 1007 1008 1009
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1010 1011
                dtype=core.VarDesc.VarType.UINT8
            )
Z
zhiboniu 已提交
1012
            if in_dynamic_mode():
1013
                with paddle.no_grad():
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1025
                    return
1026
            # for static-graph, append coalesce_tensor into startup program
1027 1028 1029
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1030
                with paddle.no_grad():
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1044 1045 1046 1047 1048

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1049 1050
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1065
        elif in_dynamic_mode():
1066
            _, _, out, state = _legacy_C_ops.rnn(
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1088 1089 1090 1091 1092 1093 1094
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1095 1096
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1097 1098 1099 1100 1101

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1102
                'SequenceLength': sequence_length,
1103 1104 1105 1106 1107 1108 1109 1110
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1111
                'is_test': not self.training,
1112 1113 1114 1115 1116 1117 1118 1119 1120
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1121 1122 1123
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1124

1125 1126 1127 1128 1129
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1130
        return out, tuple(state) if len(state) > 1 else state[0]
1131

F
Feiyu Chan 已提交
1132 1133 1134 1135
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1149
        else:
1150 1151 1152 1153 1154 1155 1156 1157 1158
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1159 1160 1161
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1162 1163 1164
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1165 1166 1167 1168
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1169 1170 1171 1172 1173 1174
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1175 1176 1177 1178
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1179 1180 1181
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1182 1183
        return outputs, final_states

1184 1185 1186 1187
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1188
        if self.time_major is not False:
1189 1190 1191 1192 1193
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1194

1195
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1196
    r"""
1197
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1198 1199
    states as inputs, and returns the output sequences and the final states.

1200 1201 1202
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1203 1204 1205 1206 1207
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1208
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1209

F
Feiyu Chan 已提交
1210
        y_{t} & = h_{t}
1211

1212
    where :math:`act` is for :attr:`activation`.
1213 1214

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1215

1216
    Parameters:
1217 1218 1219
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1220 1221
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1222
            outputs of forward and backward is concatenating. Defaults to "forward".
1223 1224
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1225 1226
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1227 1228
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1229
            dropout from 0 to 1. Defaults to 0.
1230
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1231
            `tanh` or `relu`. Defaults to `tanh`.
1232
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1233
            `weight_ih` of each cell. Defaults to None.
1234
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1235
            `weight_hh` of each cell. Defaults to None.
1236
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1237
            `bias_ih` of each cells. Defaults to None.
1238
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1239
            `bias_hh` of each cells. Defaults to None.
1240
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1241 1242
            None). For more information, please refer to :ref:`api_guide_Name`.

1243
    Inputs:
1244
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1245 1246
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1247 1248

    Returns:
1249

1250
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1251

1252
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1253 1254 1255 1256 1257 1258

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1259

F
Feiyu Chan 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1272 1273 1274 1275 1276 1277
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1278 1279
    """

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1295 1296 1297 1298
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1299
        else:
1300 1301
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1302
        super().__init__(
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1315 1316


1317
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1318
    r"""
1319
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1320 1321
    returns the output sequences and the final states.

1322 1323 1324 1325
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1326 1327 1328 1329 1330
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1331

F
Feiyu Chan 已提交
1332
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1333

F
Feiyu Chan 已提交
1334
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1335 1336 1337 1338 1339 1340 1341

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1342 1343
        y_{t} & = h_{t}

1344
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1345 1346
    multiplication operator.

1347 1348
    Using key word arguments to construct is recommended.

1349
    Parameters:
1350 1351 1352
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1353 1354
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1355
            outputs of forward and backward is concatenating. Defaults to "forward".
1356 1357
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1358 1359
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1360 1361
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1362
            dropout from 0 to 1. Defaults to 0.
1363
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1364
            `weight_ih` of each cell. Default: None.
1365
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1366
            `weight_hh` of each cell. Default: None.
1367
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1368
            `bias_ih` of each cells. Default: None.
1369
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1370
            `bias_hh` of each cells. Default: None.
1371
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1372 1373 1374
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1375
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1376
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1377
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1378 1379

    Returns:
1380

1381
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1382

1383
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1384 1385 1386 1387 1388 1389

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1390

F
Feiyu Chan 已提交
1391
    Examples:
1392

F
Feiyu Chan 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1404 1405 1406 1407 1408 1409 1410 1411
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1412 1413
    """

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1428
        super().__init__(
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1441 1442


1443
class GRU(RNNBase):
F
Feiyu Chan 已提交
1444
    r"""
1445
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1446 1447
    returns the output sequences and the final states.

1448 1449 1450 1451
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1452 1453 1454 1455
    and new states(:math:`h_{t}`).

    .. math::

1456
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1457

1458
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1459

1460
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1461 1462 1463

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1464 1465
        y_{t} & = h_{t}

1466
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1467 1468
    multiplication operator.

1469 1470
    Using key word arguments to construct is recommended.

1471
    Parameters:
1472 1473 1474
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1475 1476
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1477
            outputs of forward and backward is concatenating. Defaults to "forward".
1478 1479
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1480 1481
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1482 1483
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1484
            dropout from 0 to 1. Defaults to 0.
1485
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1486
            `weight_ih` of each cell. Default: None.
1487
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1488
            `weight_hh` of each cell. Default: None.
1489
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1490
            `bias_ih` of each cells. Default: None.
1491
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1492
            `bias_hh` of each cells. Default: None.
1493
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1494 1495 1496
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1497
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1498 1499
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1500 1501

    Returns:
1502

1503
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1504

1505
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1506 1507 1508 1509 1510 1511

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1512

F
Feiyu Chan 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1525 1526 1527 1528 1529 1530
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1531 1532
    """

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1547
        super().__init__(
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )