tensor_util.cc 53.1 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

C
chengduoZH 已提交
15 16
#include <algorithm>
#include <limits>
C
chengduo 已提交
17
#include <memory>
18
#include <string>
C
chengduo 已提交
19
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
21

Y
yuyang18 已提交
22
#include "paddle/fluid/framework/data_type.h"
S
Steffy-zxf 已提交
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/platform/complex.h"
25
#include "paddle/fluid/platform/profiler.h"
26 27 28

#include "paddle/pten/core/dense_tensor.h"

29
#ifdef PADDLE_WITH_MKLDNN
30
#include "dnnl_debug.h"  // NOLINT
31
#endif
Y
Yang Yu 已提交
32 33 34

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
35

36 37 38
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    const platform::DeviceContext& ctx, TENSOR* dst) {
39 40
  if (&src == dst) {
    auto src_copy = src;
41
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
42 43 44
    return;
  }

M
minqiyang 已提交
45 46
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
47 48 49 50
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
51
  auto src_ptr = src.data();
52 53 54 55 56 57 58 59 60
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
          ? dst->mutable_data(dst_place, src.type(), src.memory_size())
          : dst->mutable_data(dst_place, src.type());
#else
Y
Yi Wang 已提交
61
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
62
#endif
63 64 65 66 67
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
68
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
69

70 71 72 73 74
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
                  : src.numel() * SizeOfType(src.type());
#else
Y
Yi Wang 已提交
75
  auto size = src.numel() * SizeOfType(src.type());
76
#endif
Y
Yi Wang 已提交
77 78

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
79
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
80
  }
J
jianghaicheng 已提交
81 82 83
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
84
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
85 86
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
87
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
88 89
  } else if (platform::is_ipu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
90
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
91 92 93
  }
#endif

94 95 96
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
97
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
98 99
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
100
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
101 102 103 104 105 106 107
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
108
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
109 110 111 112 113
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
114 115 116 117 118 119
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
120
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
121 122 123
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
124 125 126 127 128 129
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.type());
130
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
131 132 133

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
134
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
135 136 137 138 139 140 141 142
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
143
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
144 145 146
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
147 148 149 150 151 152 153 154 155 156
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
157
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
158
  }
W
WangXi 已提交
159 160
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
161 162
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
163 164 165 166 167 168
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
169
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
    PADDLE_ENFORCE_EQ(dst_npu_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
                          dst_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size,
                 stream);
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
183 184
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
185 186 187 188 189 190
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
191
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
192 193 194 195 196 197 198 199 200 201 202
    PADDLE_ENFORCE_EQ(src_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
                          src_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size,
                 stream);
  }
203 204 205 206 207
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
208
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
209 210
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
211
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
212
  }
213
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
214
           platform::is_cpu_place(dst_place)) {
215
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
216 217 218
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
219
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
220 221 222
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
223 224
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
225
    auto ctx_place = ctx.GetPlace();
226 227 228 229 230
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
231
    auto ctx_gpu_place = ctx_place;
232 233 234 235 236
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
237
    auto stream =
F
fengjiayi 已提交
238
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
239
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
240 241 242
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
243 244
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
245
    auto ctx_place = ctx.GetPlace();
246 247 248 249 250
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
251
    auto ctx_gpu_place = ctx_place;
252 253 254 255 256
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
257
    auto stream =
F
fengjiayi 已提交
258
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
259
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
260 261 262
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
263 264
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
265 266 267 268 269 270
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
271
    auto ctx_gpu_place = ctx_place;
272 273 274 275 276 277 278 279 280 281
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
282 283 284
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
285 286
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
287 288 289 290 291 292
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
293
    auto ctx_gpu_place = ctx_place;
294 295 296 297 298 299 300 301 302 303
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
304 305 306
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
307 308
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
309
    auto ctx_place = ctx.GetPlace();
310 311 312 313 314
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
315
    auto stream =
F
fengjiayi 已提交
316
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
317 318 319 320 321 322 323
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
324
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
325
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
326
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
327 328 329
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
330 331
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
332 333
      }
    }
334 335
  }
  else {  // NOLINT
336 337
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
338 339
  }
#endif
340 341 342
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
343 344
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
345 346 347 348 349 350
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
351 352
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
353 354 355 356 357 358
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
359 360
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
361 362 363 364 365 366 367 368 369
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
370 371
}

372 373 374
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    TENSOR* dst) {
Y
Yi Wang 已提交
375 376
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
377 378
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
      platform::is_mlu_place(dst_place)) {
Y
Yi Wang 已提交
379
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
380 381
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
382
  }
383 384 385 386 387 388 389 390 391 392 393
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
Y
Yi Wang 已提交
394

F
fengjiayi 已提交
395 396
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
397 398 399 400 401 402
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
403 404
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
405 406 407
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
408 409 410
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
411
  auto src_place = src.place();
412
  auto src_ptr = src.data();
F
fengjiayi 已提交
413
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
414
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
415 416 417 418 419 420 421

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
422 423
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
424
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
425
  }
J
jianghaicheng 已提交
426 427 428
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
429
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
430 431
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_ipu_place(dst_place)) {
432
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
433 434 435 436 437
  } else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
438 439 440
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
441
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
442 443 444
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
445
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
446 447 448
  }
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
449 450 451 452 453
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
454 455 456
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
457 458 459 460
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
J
jianghaicheng 已提交
461 462
  }
  else {  // NOLINT
463 464 465 466
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
467 468 469
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
470
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
471 472 473
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
474
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
475 476 477 478 479 480 481 482
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
483
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
484 485 486 487 488 489
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
490
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
491 492
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
493
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
494
  }
495
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
496
           platform::is_cpu_place(dst_place)) {
497
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
498 499 500
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
501
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
502 503 504
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
505
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
506 507 508
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
509 510
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
511
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
512 513 514
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
515 516
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
517
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
518 519 520
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
521 522
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
523
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
524 525 526
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
527 528
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
W
Wu Yi 已提交
529 530
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
531 532
  }
  else {  // NOLINT
533 534
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
535 536
  }
#endif
537 538 539
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
540
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
541 542 543
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
544
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
545 546 547 548 549 550 551 552
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
553
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
554 555 556 557 558 559
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
560 561
}

Y
Yang Yu 已提交
562 563 564 565 566 567 568 569 570 571 572 573
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
574
  void apply() const {
Y
Yang Yu 已提交
575 576
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
577
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
578 579 580 581 582 583 584
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
585 586
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
587 588 589
}

template <typename Predicate>
590 591
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
592 593 594
  const framework::Tensor& tensor_;
  Predicate predicate_;

595 596 597 598 599 600 601 602 603 604 605 606 607
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

608
 public:
Y
Yang Yu 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

622 623 624 625 626
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
627 628 629 630 631 632 633
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
634 635
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
636
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
637 638
  }

639 640 641 642 643 644
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
645 646 647 648 649
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
650

651 652 653 654 655
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
656 657 658 659
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
660 661 662 663 664

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
665 666
};

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
688 689 690 691 692 693 694
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

695 696 697 698 699 700 701 702
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
  VisitDataType(tensor.type(), AllDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
758
struct ContainsNANPredicate {
Y
Yang Yu 已提交
759 760 761
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
762
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
763 764 765 766
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
767 768
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
769 770 771
  return Any(tensor, predicate);
}

772 773 774 775 776 777
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
778 779 780 781 782 783
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
784
struct ContainsInfPredicate {
Y
Yang Yu 已提交
785 786 787
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
788
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
789 790 791 792
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
793 794
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
795 796 797
  return Any(tensor, predicate);
}

798 799 800 801 802 803
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
804 805 806 807 808 809
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

810 811 812 813 814 815 816 817 818 819
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

820
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
821
template <typename T>
J
Jack Zhou 已提交
822 823
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
824 825 826 827 828 829 830 831 832 833 834 835 836 837
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

838 839 840
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
841 842 843
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
844

845
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
846
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
847
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
848 849 850 851 852 853 854 855 856 857
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
858 859 860
#endif
  }

861 862 863 864
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
865 866 867 868
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

869
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
870 871 872 873 874 875 876 877
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
878 879 880 881
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
882 883 884 885 886 887 888 889
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
890
  }
891 892 893 894 895 896 897 898 899 900 901 902

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
903 904 905 906 907 908 909 910 911 912 913
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
914 915 916 917 918 919 920 921 922
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
923 924 925 926 927 928 929 930 931 932
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
933
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
934 935 936 937 938 939 940 941 942 943
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
944 945
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

946
    auto* data_ptr = tensor.data();
W
wanghuancoder 已提交
947
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
948 949
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
950
    if (platform::is_gpu_place(tensor.place())) {
951
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
952 953 954 955 956 957 958 959
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
960
        memory::Copy(cpu, buf.get(), tensor.place(),
Y
Yi Wang 已提交
961 962 963 964 965 966 967 968
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
969 970
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
971 972 973 974 975 976 977 978 979 980 981
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
982
        memory::Copy(cpu, buf.get(), tensor.place(),
983 984 985 986 987 988 989 990 991
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
992 993 994 995 996 997 998 999 1000 1001 1002
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1003
        memory::Copy(cpu, buf.get(), tensor.place(),
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                     reinterpret_cast<const void*>(data), size_to_write,
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1025
        memory::Copy(cpu, buf.get(), tensor.place(),
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
                     reinterpret_cast<const void*>(data), size_to_write,
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
Y
Yi Wang 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1050
  void apply() {
Y
Yi Wang 已提交
1051 1052 1053 1054 1055 1056 1057 1058
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
W
Wilber 已提交
1088
    platform::CPUDeviceContext ctx;
T
tangwei12 已提交
1089
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1090
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1091
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1092
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1093
        platform::is_npu_place(dev_ctx.GetPlace())) {
1094
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1095 1096
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
    defined(PADDLE_WITH_ASCEND_CL)
T
tangwei12 已提交
1097 1098 1099 1100 1101 1102 1103 1104
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1105 1106 1107
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1108
#else
1109 1110 1111
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1112
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1113 1114
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1115 1116 1117
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1118 1119 1120
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1121
      }
T
tangwei12 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
1132 1133 1134 1135
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1136 1137 1138 1139 1140
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1141 1142 1143 1144 1145 1146 1147
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1148 1149 1150
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1151 1152 1153 1154 1155 1156 1157
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
W
Wilber 已提交
1158
    platform::CPUDeviceContext ctx;
Y
Yu Yang 已提交
1159
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1160
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1161
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1162
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1163
        platform::is_npu_place(dev_ctx.GetPlace())) {
1164
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1165 1166
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
    defined(PADDLE_WITH_ASCEND_CL)
Y
Yi Wang 已提交
1167 1168 1169 1170 1171
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1172
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1173 1174
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1175 1176 1177
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1178
#else
1179 1180 1181
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1182
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1183 1184
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1185 1186 1187
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1188 1189 1190
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1191
      }
Y
Yi Wang 已提交
1192 1193 1194 1195 1196
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1197
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1198 1199 1200 1201
    }
  }
}

6
633WHU 已提交
1202 1203 1204 1205
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
1206 1207 1208
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1209 1210 1211 1212 1213 1214 1215

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1216 1217 1218
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1219 1220 1221 1222 1223 1224
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1225 1226 1227
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1228 1229 1230
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1231 1232 1233 1234 1235
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1236 1237 1238
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1239 1240 1241 1242 1243
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1254 1255 1256
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1257
    default:
1258 1259
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

S
Siming Dai 已提交
1280
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1281 1282
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1283
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1284
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1285
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1286
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1287
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1288
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1289 1290 1291 1292 1293 1294 1295
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1296 1297 1298
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1299 1300
}

1301 1302 1303 1304 1305 1306
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1307 1308 1309 1310 1311
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1312
  os << "  - data: [";
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1327 1328 1329 1330 1331 1332
    }
  }
  os << "]";
  return os;
}

1333
template <>
1334
std::ostream& print_tensor<paddle::platform::complex<float>>(
1335
    std::ostream& os, const framework::Tensor& tensor) {
1336
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1337 1338 1339 1340
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1341
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1342
    for (int j = 1; j < element_num; ++j) {
1343 1344
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1345 1346 1347 1348 1349 1350 1351
    }
  }
  os << "]";
  return os;
}

template <>
1352
std::ostream& print_tensor<paddle::platform::complex<double>>(
1353
    std::ostream& os, const framework::Tensor& tensor) {
1354
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1355 1356 1357 1358
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1359
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1360
    for (int j = 1; j < element_num; ++j) {
1361 1362
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1363 1364 1365 1366 1367 1368
    }
  }
  os << "]";
  return os;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  os << "{";
  for (auto& v : lod) {
    os << "{";
    bool is_first = true;
    for (auto& i : v) {
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
    }
    os << "}";
  }
  os << "}";

  return os;
}

1389 1390 1391 1392 1393 1394
}  // namespace framework
}  // namespace paddle

namespace pten {

std::ostream& operator<<(std::ostream& os, const pten::DenseTensor& t) {
1395 1396 1397 1398
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1399 1400
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
1401 1402
  os << "  - layout: " << paddle::framework::DataLayoutToString(t.layout())
     << "\n";
1403

1404 1405 1406 1407 1408
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1409
  DenseTensor tensor;
1410
  tensor.Resize(t.dims());
1411
  if (paddle::platform::is_cpu_place(t.place())) {
1412 1413
    tensor.ShareDataWith(t);
  } else {
1414 1415 1416 1417
    paddle::platform::CPUPlace place;
    paddle::framework::TensorCopy(t, place, &tensor);
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
1418 1419 1420 1421
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

1422 1423 1424 1425 1426 1427 1428
#define PrintTensorCallback(cpp_type, proto_type)            \
  do {                                                       \
    if (tensor.type() == proto_type) {                       \
      os << "  - dtype: " << proto_type << "\n";             \
      paddle::framework::print_tensor<cpp_type>(os, tensor); \
      return os;                                             \
    }                                                        \
1429 1430 1431 1432 1433 1434
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}
W
Wilber 已提交
1435
}  // namespace pten