test_variable.py 42.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18 19
import numpy as np

20
import paddle
21 22
from paddle import fluid
from paddle.fluid import core
23 24 25 26 27
from paddle.fluid.framework import (
    Program,
    convert_np_dtype_to_dtype_,
    default_main_program,
)
Y
Yu Yang 已提交
28

29 30
paddle.enable_static()

Y
Yu Yang 已提交
31 32

class TestVariable(unittest.TestCase):
33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w"
        )
54
        self.assertNotEqual(str(w), "")
55
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
56 57
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
58
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
59 60 61
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
62
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
63 64
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
65
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
66 67
        self.assertEqual(0, w.lod_level)

68 69 70
        self.assertRaises(
            ValueError, lambda: b.create_var(name="fc.w", shape=(24, 100))
        )
Y
Yu Yang 已提交
71

72 73 74 75 76
        w = b.create_var(
            dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
            shape=[1],
            name="str_var",
        )
77 78
        self.assertEqual(None, w.lod_level)

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
108 109 110
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
111 112 113
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
114 115
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
116
    def _test_slice(self, place):
W
wopeizl 已提交
117 118 119 120 121
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
122
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
123 124 125 126

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127
        nw = w[:, :]
W
wopeizl 已提交
128 129
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
130 131
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
132

H
Hongyu Liu 已提交
133 134
        nw = w[1, 1, 1]

J
JYChen 已提交
135
        self.assertEqual(len(nw.shape), 0)
H
Hongyu Liu 已提交
136 137 138

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
139 140 141 142 143 144

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
145 146 147 148 149 150 151
            tensor_array = np.array(
                [
                    [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                    [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                    [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
                ]
            ).astype('float32')
152
            var = paddle.assign(tensor_array)
W
wopeizl 已提交
153 154 155
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
156 157
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
158
            var_reshape = paddle.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
159 160 161 162 163 164 165 166 167 168
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
169

G
GGBond8488 已提交
170
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
C
Charles-hit 已提交
171
            y = paddle.static.nn.fc(x, size=1, activation=None)
H
Hongyu Liu 已提交
172
            y_1 = y[:, 0]
W
wopeizl 已提交
173 174
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
175
            data.append(np.random.randint(10, size=[13]).astype('float32'))
W
wopeizl 已提交
176 177
            exe.run(fluid.default_startup_program())

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            local_out = exe.run(
                main,
                feed=feeder.feed([data]),
                fetch_list=[
                    var,
                    var1,
                    var2,
                    var3,
                    var4,
                    var5,
                    var6,
                    var7,
                    var8,
                    var9,
                    var10,
                    var11,
                    var12,
                    var13,
                    var14,
                    var15,
                ],
            )
W
wopeizl 已提交
200

201 202 203 204 205 206
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
207 208
                local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
            )
209
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            np.testing.assert_array_equal(
                local_out[8], tensor_array[:1, :1, :1]
            )
            np.testing.assert_array_equal(
                local_out[9], tensor_array[:-1, :-1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[10], tensor_array[::-1, :1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[11], tensor_array[:-1, ::-1, -1:]
            )
            np.testing.assert_array_equal(
                local_out[12], tensor_array[1:2, 2:, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[13], tensor_array[2:10, 2:, -2:-1]
            )
            np.testing.assert_array_equal(
                local_out[14], tensor_array[1:-1, 0:2, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[15], tensor_array[::-1, ::-1, ::-1]
            )
W
wopeizl 已提交
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

289 290 291 292 293
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
294
            y = paddle.assign([1, 2, 3, 4])
295 296 297 298
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
299 300
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
301
            out7 = y[..., 0]
302 303

        exe = paddle.static.Executor(place)
304 305 306
        result = exe.run(
            prog, fetch_list=[out1, out2, out3, out4, out5, out6, out7]
        )
307

W
WeiXin 已提交
308
        expected = [
309 310 311 312 313 314 315
            data[0:, ..., 1:],
            data[0:, ...],
            data[..., 1:],
            data[...],
            data[[1, 0], [0, 0]],
            data[([1, 0], [0, 0])],
            np.array([1]),
W
WeiXin 已提交
316
        ]
317 318 319 320 321

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
322 323
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
324
        self.assertTrue((result[6] == expected[6]).all())
325

326 327
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
328

329
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
330 331
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
332 333 334 335 336
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
337 338 339 340
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
341 342 343 344 345

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
346 347 348 349
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
350 351

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
352
        result = exe.run(
353 354
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7]
        )
355

Z
zyfncg 已提交
356
        expected = [
357 358 359 360 361 362 363 364
            data[idx0],
            data[idx1],
            data[idx2],
            data[idx3],
            data[idx4],
            data[np_idx],
            data[data < 0.36],
            data[data > 0.6],
Z
zyfncg 已提交
365
        ]
366 367 368 369 370

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
371 372 373 374
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
375

Z
zyfncg 已提交
376 377 378
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
379 380
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

399 400
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
401
        if core.is_compiled_with_cuda():
402 403 404 405 406 407
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
408
            self._test_slice_index_ellipsis(place)
409
            self._test_slice_index_list_bool(place)
410
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

428
    def test_fake_interface_only_api(self):
429 430 431
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
448
            var.stop_gradient = True
449 450 451 452 453 454
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
455

456 457 458
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

459 460 461 462 463 464 465
        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True,
        )
466 467 468 469 470 471

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
500 501 502
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32'
                )
503 504 505 506 507
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
508 509 510
                result = exe.run(
                    main, feed={'x': feed_data}, fetch_list=[x, detach_x]
                )
511 512 513 514 515 516 517 518 519
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

520 521 522
                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]
                ).astype('float32')
523 524 525 526 527
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
528

529
class TestVariableSlice(unittest.TestCase):
530 531 532
    def setUp(self):
        np.random.seed(2022)

533 534 535 536 537 538 539 540 541
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
542
            out4 = x[..., None, :, None]
543

544
        outs = [out0, out1, out2, out3, out4]
545 546 547 548
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
549 550 551 552 553
            data[0:, None, 1:],
            data[0:, None],
            data[None, 1:],
            data[None],
            data[..., None, :, None],
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
575 576 577 578 579 580
            data[0, 1:, None],
            data[0, None],
            data[None, 1],
            data[None],
            data[0, 0, 0, None],
            data[None, 0, 0, 0, None],
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
597
class TestListIndex(unittest.TestCase):
J
JYChen 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610
    # note(chenjianye):
    # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
    # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
    # which is used to wrap index elements for multiple axes.
    # And from 1.23, this will be treat as a whole and only works on one axis.
    #
    # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
    #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
    #
    # Here, we just modify the code to remove the impact of numpy version changes,
    # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
    # Whether the paddle behavior in this case will change is still up for debate.

611 612 613
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
614 615 616 617 618 619 620
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
621 622 623
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
624 625 626 627 628 629 630 631 632 633

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
634 635 636
                x = paddle.static.data(
                    name='x', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
637 638 639

                y = x[index_mod]

640 641 642 643 644
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
645 646 647 648 649 650 651

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

J
JYChen 已提交
652
                getitem_np = array[tuple(index_mod)]
653 654 655
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
656
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
J
JYChen 已提交
674
                getitem_np = array[tuple(index_mod)]
W
WeiXin 已提交
675 676 677 678 679 680 681 682

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
683
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
684 685 686 687 688 689 690

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
691 692 693
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
694 695 696 697 698 699

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
700 701 702 703 704 705
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
706 707 708 709 710 711 712 713 714

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

715 716 717 718 719 720 721 722 723
            value = paddle.static.data(
                name='value', shape=value_np.shape, dtype='float32'
            )
            index1 = paddle.static.data(
                name='index1', shape=index1.shape, dtype='int32'
            )
            index2 = paddle.static.data(
                name='index2', shape=index2.shape, dtype='int32'
            )
W
WeiXin 已提交
724 725 726

            y = x[index1, index2]

727 728 729 730 731
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
W
WeiXin 已提交
732 733 734 735 736 737 738 739 740 741

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

742 743 744 745 746 747 748 749 750
            getitem_pp = exe.run(
                prog,
                feed={
                    x.name: array,
                    index1.name: index_mod1,
                    index2.name: index_mod2,
                },
                fetch_list=fetch_list,
            )
W
WeiXin 已提交
751

752 753 754
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
755
                err_msg=f'\n numpy:{y2},\n paddle:{getitem_pp[0]}',
756
            )
W
WeiXin 已提交
757 758 759 760

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
761 762 763
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
764 765 766 767 768 769

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
770 771 772 773 774 775
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
776 777 778 779 780 781 782 783 784 785

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
786
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
805 806 807
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
808 809 810
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

811 812 813
        np.testing.assert_allclose(
            value_np, getitem_pp[0], rtol=1e-5, atol=1e-8
        )
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
842 843 844
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

845 846 847
        value = paddle.static.data(
            name='value', shape=value_np.shape, dtype='float32'
        )
W
WeiXin 已提交
848 849 850 851 852 853 854 855 856 857 858 859

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()
        try:
J
JYChen 已提交
860 861 862 863 864
            index = (
                tuple(index)
                if isinstance(index, list) and isinstance(index[0], list)
                else index
            )
W
WeiXin 已提交
865 866 867
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
868 869 870 871 872
                setitem_pp = exe.run(
                    prog,
                    feed={x.name: array, value.name: value_np},
                    fetch_list=fetch_list,
                )
W
WeiXin 已提交
873
            return
874 875 876 877 878
        setitem_pp = exe.run(
            prog,
            feed={x.name: array, value.name: value_np},
            fetch_list=fetch_list,
        )
W
WeiXin 已提交
879

880
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
881 882 883 884 885

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
886 887 888
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
889 890 891 892 893

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
894 895 896 897 898 899
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
914 915 916
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
917 918 919 920 921

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
922 923 924 925 926 927
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
941 942 943
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
944 945 946 947 948

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
949 950 951 952 953 954
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
955 956 957
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
994 995 996
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
997 998 999
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1000 1001

        index_shape = [2, 3, 4]
1002 1003 1004 1005 1006 1007 1008 1009 1010
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1011 1012

        value_shape = [4]
1013 1014 1015 1016 1017 1018
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )

                value = paddle.static.data(
                    name='value', shape=value_np.shape, dtype='float32'
                )
                index_1 = paddle.static.data(
                    name='index_1', shape=index1.shape, dtype='int32'
                )
                index_2 = paddle.static.data(
                    name='index_2', shape=index2.shape, dtype='int32'
                )
W
WeiXin 已提交
1048 1049 1050 1051

                x1[index_1, index_2] = value
                x2[index_1] = value

1052 1053 1054 1055 1056
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
1057 1058 1059 1060 1061 1062 1063

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
                setitem_pp = exe.run(
                    prog,
                    feed={
                        x1.name: array,
                        x2.name: array,
                        value.name: value_np,
                        index_1.name: index_mod1,
                        index_2.name: index_mod2,
                    },
                    fetch_list=fetch_list,
                )
1075 1076 1077 1078
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1079 1080 1081
                        array2, setitem_pp[0]
                    ),
                )
1082 1083 1084 1085
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1086 1087 1088
                        array3, setitem_pp[1]
                    ),
                )
W
WeiXin 已提交
1089 1090 1091 1092 1093 1094 1095
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
1096 1097 1098
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1099 1100

        index_shape = [2, 3, 4]
1101 1102 1103 1104 1105 1106 1107 1108 1109
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1125 1126 1127 1128 1129 1130
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
1131 1132 1133 1134 1135

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
1136 1137 1138 1139 1140
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
1141 1142 1143 1144 1145 1146

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

1147 1148 1149 1150 1151
                setitem_pp = exe.run(
                    prog,
                    feed={x1.name: array, x2.name: array},
                    fetch_list=fetch_list,
                )
1152 1153 1154 1155
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1156 1157 1158
                        array2, setitem_pp[0]
                    ),
                )
1159 1160 1161 1162
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1163 1164 1165
                        array3, setitem_pp[1]
                    ),
                )
1166 1167 1168 1169 1170

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1171 1172 1173
                        y_np1, setitem_pp[2]
                    ),
                )
1174 1175 1176 1177
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1178 1179 1180
                        y_np2, setitem_pp[3]
                    ),
                )
W
WeiXin 已提交
1181 1182 1183 1184 1185 1186 1187
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1188 1189 1190
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1191
        index_shape = [2, 3, 4]
1192 1193 1194 1195 1196 1197 1198 1199 1200
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1215 1216 1217
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
1218
                err_msg=f'\n numpy:{y_np1},\n paddle:{y_t1.numpy()}',
1219
            )
W
WeiXin 已提交
1220 1221 1222 1223 1224 1225
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1226 1227 1228
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
1229
                err_msg=f'\n numpy:{y_np2},\n paddle:{y_t2.numpy()}',
1230
            )
W
WeiXin 已提交
1231 1232 1233 1234 1235

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1236 1237 1238 1239
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1240 1241 1242
                    array1, tensor1.numpy()
                ),
            )
W
WeiXin 已提交
1243 1244 1245 1246 1247 1248 1249
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1250 1251 1252 1253
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1254 1255 1256
                    array2, tensor2.numpy()
                ),
            )
W
WeiXin 已提交
1257 1258 1259 1260 1261 1262

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1263 1264
if __name__ == '__main__':
    unittest.main()