test_variable.py 41.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18
import paddle
19 20 21 22 23
from paddle.fluid.framework import (
    Program,
    convert_np_dtype_to_dtype_,
    default_main_program,
)
24
import paddle
W
wopeizl 已提交
25
import paddle.fluid as fluid
26
import paddle.fluid.core as core
Y
Yu Yang 已提交
27 28
import numpy as np

29 30
paddle.enable_static()

Y
Yu Yang 已提交
31 32

class TestVariable(unittest.TestCase):
33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w"
        )
54
        self.assertNotEqual(str(w), "")
55
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
56 57
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
58
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
59 60 61
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
62
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
63 64
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
65
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
66 67
        self.assertEqual(0, w.lod_level)

68 69 70
        self.assertRaises(
            ValueError, lambda: b.create_var(name="fc.w", shape=(24, 100))
        )
Y
Yu Yang 已提交
71

72 73 74 75 76
        w = b.create_var(
            dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
            shape=[1],
            name="str_var",
        )
77 78
        self.assertEqual(None, w.lod_level)

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
108 109 110
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
111 112 113
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
114 115
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
116
    def _test_slice(self, place):
W
wopeizl 已提交
117 118 119 120 121
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
122
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
123 124 125 126

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127
        nw = w[:, :]
W
wopeizl 已提交
128 129
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
130 131
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
132

H
Hongyu Liu 已提交
133 134 135 136 137 138 139
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
140 141 142 143 144 145

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
146 147 148 149 150 151 152
            tensor_array = np.array(
                [
                    [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                    [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                    [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
                ]
            ).astype('float32')
W
wopeizl 已提交
153 154 155 156
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
157 158
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
159
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
160 161 162 163 164 165 166 167 168 169
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
170 171 172

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
173
            y_1 = y[:, 0]
W
wopeizl 已提交
174 175 176 177 178
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            local_out = exe.run(
                main,
                feed=feeder.feed([data]),
                fetch_list=[
                    var,
                    var1,
                    var2,
                    var3,
                    var4,
                    var5,
                    var6,
                    var7,
                    var8,
                    var9,
                    var10,
                    var11,
                    var12,
                    var13,
                    var14,
                    var15,
                ],
            )
W
wopeizl 已提交
201

202 203 204 205 206 207
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
208 209
                local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
            )
210
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            np.testing.assert_array_equal(
                local_out[8], tensor_array[:1, :1, :1]
            )
            np.testing.assert_array_equal(
                local_out[9], tensor_array[:-1, :-1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[10], tensor_array[::-1, :1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[11], tensor_array[:-1, ::-1, -1:]
            )
            np.testing.assert_array_equal(
                local_out[12], tensor_array[1:2, 2:, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[13], tensor_array[2:10, 2:, -2:-1]
            )
            np.testing.assert_array_equal(
                local_out[14], tensor_array[1:-1, 0:2, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[15], tensor_array[::-1, ::-1, ::-1]
            )
W
wopeizl 已提交
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

290 291 292 293 294
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
295
            y = paddle.assign([1, 2, 3, 4])
296 297 298 299
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
300 301
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
302
            out7 = y[..., 0]
303 304

        exe = paddle.static.Executor(place)
305 306 307
        result = exe.run(
            prog, fetch_list=[out1, out2, out3, out4, out5, out6, out7]
        )
308

W
WeiXin 已提交
309
        expected = [
310 311 312 313 314 315 316
            data[0:, ..., 1:],
            data[0:, ...],
            data[..., 1:],
            data[...],
            data[[1, 0], [0, 0]],
            data[([1, 0], [0, 0])],
            np.array([1]),
W
WeiXin 已提交
317
        ]
318 319 320 321 322

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
323 324
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
325
        self.assertTrue((result[6] == expected[6]).all())
326

327 328
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
329

330
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
331 332
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
333 334 335 336 337
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
338 339 340 341
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
342 343 344 345 346

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
347 348 349 350
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
351 352

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
353
        result = exe.run(
354 355
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7]
        )
356

Z
zyfncg 已提交
357
        expected = [
358 359 360 361 362 363 364 365
            data[idx0],
            data[idx1],
            data[idx2],
            data[idx3],
            data[idx4],
            data[np_idx],
            data[data < 0.36],
            data[data > 0.6],
Z
zyfncg 已提交
366
        ]
367 368 369 370 371

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
372 373 374 375
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
376

Z
zyfncg 已提交
377 378 379
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
380 381
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

400 401
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
402
        if core.is_compiled_with_cuda():
403 404 405 406 407 408
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
409
            self._test_slice_index_ellipsis(place)
410
            self._test_slice_index_list_bool(place)
411
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

429
    def test_fake_interface_only_api(self):
430 431 432
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
449
            var.stop_gradient = True
450 451 452 453 454 455
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
456

457 458 459
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

460 461 462 463 464 465 466
        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True,
        )
467 468 469 470 471 472

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
501 502 503
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32'
                )
504 505 506 507 508
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
509 510 511
                result = exe.run(
                    main, feed={'x': feed_data}, fetch_list=[x, detach_x]
                )
512 513 514 515 516 517 518 519 520
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

521 522 523
                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]
                ).astype('float32')
524 525 526 527 528
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
529

530
class TestVariableSlice(unittest.TestCase):
531 532 533
    def setUp(self):
        np.random.seed(2022)

534 535 536 537 538 539 540 541 542
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
543
            out4 = x[..., None, :, None]
544

545
        outs = [out0, out1, out2, out3, out4]
546 547 548 549
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
550 551 552 553 554
            data[0:, None, 1:],
            data[0:, None],
            data[None, 1:],
            data[None],
            data[..., None, :, None],
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
576 577 578 579 580 581
            data[0, 1:, None],
            data[0, None],
            data[None, 1],
            data[None],
            data[0, 0, 0, None],
            data[None, 0, 0, 0, None],
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
598
class TestListIndex(unittest.TestCase):
599 600 601
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
602 603 604 605 606 607 608
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
609 610 611
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
612 613 614 615 616 617 618 619 620 621

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
622 623 624
                x = paddle.static.data(
                    name='x', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
625 626 627

                y = x[index_mod]

628 629 630 631 632
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
633 634 635 636 637 638 639 640

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
641 642 643
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
644
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
671
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
672 673 674 675 676 677 678

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
679 680 681
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
682 683 684 685 686 687

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
688 689 690 691 692 693
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
694 695 696 697 698 699 700 701 702

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

703 704 705 706 707 708 709 710 711
            value = paddle.static.data(
                name='value', shape=value_np.shape, dtype='float32'
            )
            index1 = paddle.static.data(
                name='index1', shape=index1.shape, dtype='int32'
            )
            index2 = paddle.static.data(
                name='index2', shape=index2.shape, dtype='int32'
            )
W
WeiXin 已提交
712 713 714

            y = x[index1, index2]

715 716 717 718 719
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
W
WeiXin 已提交
720 721 722 723 724 725 726 727 728 729

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

730 731 732 733 734 735 736 737 738
            getitem_pp = exe.run(
                prog,
                feed={
                    x.name: array,
                    index1.name: index_mod1,
                    index2.name: index_mod2,
                },
                fetch_list=fetch_list,
            )
W
WeiXin 已提交
739

740 741 742
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
743 744
                err_msg='\n numpy:{},\n paddle:{}'.format(y2, getitem_pp[0]),
            )
W
WeiXin 已提交
745 746 747 748

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
749 750 751
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
752 753 754 755 756 757

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
758 759 760 761 762 763
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
764 765 766 767 768 769 770 771 772 773

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
774
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
793 794 795
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
796 797 798
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

799 800 801
        np.testing.assert_allclose(
            value_np, getitem_pp[0], rtol=1e-5, atol=1e-8
        )
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
830 831 832
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

833 834 835
        value = paddle.static.data(
            name='value', shape=value_np.shape, dtype='float32'
        )
W
WeiXin 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
852 853 854 855 856
                setitem_pp = exe.run(
                    prog,
                    feed={x.name: array, value.name: value_np},
                    fetch_list=fetch_list,
                )
W
WeiXin 已提交
857
            return
858 859 860 861 862
        setitem_pp = exe.run(
            prog,
            feed={x.name: array, value.name: value_np},
            fetch_list=fetch_list,
        )
W
WeiXin 已提交
863

864
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
865 866 867 868 869

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
870 871 872
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
873 874 875 876 877

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
878 879 880 881 882 883
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
898 899 900
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
901 902 903 904 905

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
906 907 908 909 910 911
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
925 926 927
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
928 929 930 931 932

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
933 934 935 936 937 938
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
939 940 941
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
978 979 980
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
981 982 983
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
984 985

        index_shape = [2, 3, 4]
986 987 988 989 990 991 992 993 994
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
995 996

        value_shape = [4]
997 998 999 1000 1001 1002
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )

                value = paddle.static.data(
                    name='value', shape=value_np.shape, dtype='float32'
                )
                index_1 = paddle.static.data(
                    name='index_1', shape=index1.shape, dtype='int32'
                )
                index_2 = paddle.static.data(
                    name='index_2', shape=index2.shape, dtype='int32'
                )
W
WeiXin 已提交
1032 1033 1034 1035

                x1[index_1, index_2] = value
                x2[index_1] = value

1036 1037 1038 1039 1040
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
1041 1042 1043 1044 1045 1046 1047

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                setitem_pp = exe.run(
                    prog,
                    feed={
                        x1.name: array,
                        x2.name: array,
                        value.name: value_np,
                        index_1.name: index_mod1,
                        index_2.name: index_mod2,
                    },
                    fetch_list=fetch_list,
                )
1059 1060 1061 1062
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1063 1064 1065
                        array2, setitem_pp[0]
                    ),
                )
1066 1067 1068 1069
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1070 1071 1072
                        array3, setitem_pp[1]
                    ),
                )
W
WeiXin 已提交
1073 1074 1075 1076 1077 1078 1079
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
1080 1081 1082
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1083 1084

        index_shape = [2, 3, 4]
1085 1086 1087 1088 1089 1090 1091 1092 1093
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1109 1110 1111 1112 1113 1114
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
1115 1116 1117 1118 1119

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
1120 1121 1122 1123 1124
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
1125 1126 1127 1128 1129 1130

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

1131 1132 1133 1134 1135
                setitem_pp = exe.run(
                    prog,
                    feed={x1.name: array, x2.name: array},
                    fetch_list=fetch_list,
                )
1136 1137 1138 1139
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1140 1141 1142
                        array2, setitem_pp[0]
                    ),
                )
1143 1144 1145 1146
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1147 1148 1149
                        array3, setitem_pp[1]
                    ),
                )
1150 1151 1152 1153 1154

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1155 1156 1157
                        y_np1, setitem_pp[2]
                    ),
                )
1158 1159 1160 1161
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1162 1163 1164
                        y_np2, setitem_pp[3]
                    ),
                )
W
WeiXin 已提交
1165 1166 1167 1168 1169 1170 1171
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1172 1173 1174
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1175
        index_shape = [2, 3, 4]
1176 1177 1178 1179 1180 1181 1182 1183 1184
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1199 1200 1201
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
1202 1203
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np1, y_t1.numpy()),
            )
W
WeiXin 已提交
1204 1205 1206 1207 1208 1209
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1210 1211 1212
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
1213 1214
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np2, y_t2.numpy()),
            )
W
WeiXin 已提交
1215 1216 1217 1218 1219

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1220 1221 1222 1223
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1224 1225 1226
                    array1, tensor1.numpy()
                ),
            )
W
WeiXin 已提交
1227 1228 1229 1230 1231 1232 1233
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1234 1235 1236 1237
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1238 1239 1240
                    array2, tensor2.numpy()
                ),
            )
W
WeiXin 已提交
1241 1242 1243 1244 1245 1246

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1247 1248
if __name__ == '__main__':
    unittest.main()