test_variable.py 17.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import unittest
18
import paddle
19
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, in_dygraph_mode
20
import paddle
W
wopeizl 已提交
21
import paddle.fluid as fluid
H
Hongyu Liu 已提交
22
import paddle.fluid.layers as layers
23
import paddle.fluid.core as core
Y
Yu Yang 已提交
24 25
import numpy as np

26 27
paddle.enable_static()

Y
Yu Yang 已提交
28 29 30

class TestVariable(unittest.TestCase):
    def test_np_dtype_convert(self):
31
        DT = core.VarDesc.VarType
32
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
33 34 35 36 37 38 39
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
40 41
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
42

Y
Yu Yang 已提交
43
    def test_var(self):
Y
Yu Yang 已提交
44
        b = default_main_program().current_block()
Y
Yu Yang 已提交
45 46
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w")
47
        self.assertNotEqual(str(w), "")
48
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
49 50
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
51
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
52 53 54
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
55
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
56 57
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
58
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
59 60 61 62 63
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

Y
Yu Yang 已提交
64 65 66 67 68 69 70
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
71
    def _test_slice(self, place):
W
wopeizl 已提交
72 73 74 75 76
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
77
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
78 79 80 81

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
82
        nw = w[:, :]
W
wopeizl 已提交
83 84
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
85 86
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
87

H
Hongyu Liu 已提交
88 89 90 91 92 93 94
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
            tensor_array = np.array(
                [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                 [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
109 110
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
111
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
112 113 114 115 116 117 118 119 120 121
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
122 123 124

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
125
            y_1 = y[:, 0]
W
wopeizl 已提交
126 127 128 129 130
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
131
            local_out = exe.run(main,
W
wopeizl 已提交
132
                                feed=feeder.feed([data]),
W
wopeizl 已提交
133 134
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
135 136
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
137 138
                                ])

H
Hongyu Liu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            self.assertTrue(
                np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
            self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
            self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
            self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
            self.assertTrue(
                np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
            self.assertTrue(
                np.array_equal(local_out[6],
                               tensor_array.reshape((3, -1, 3))[:, :, -1]))
            self.assertTrue(
                np.array_equal(local_out[7], tensor_array[:, :, :-1]))
            self.assertTrue(
                np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
            self.assertTrue(
                np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
            self.assertTrue(
                np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
            self.assertTrue(
                np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
W
wopeizl 已提交
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out1, out2, out3, out4])

        expected = [data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

242 243 244 245 246
        with self.assertRaises(IndexError):
            res = x[[1, 0], [0, 0]]

        with self.assertRaises(TypeError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def _test_slice_index_list_bool(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
            idx2 = [False, False]
            idx3 = [True, True]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(TypeError):
            res = x[[True, 0]]

276 277
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
278
        if core.is_compiled_with_cuda():
279 280 281 282 283 284
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
285
            self._test_slice_index_ellipsis(place)
286
            self._test_slice_index_list_bool(place)
W
wopeizl 已提交
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

304
    def test_fake_interface_only_api(self):
305 306 307
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
324
            var.stop_gradient = True
325 326 327 328 329 330
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32')
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]).astype('float32')
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
class TestVariableSlice(unittest.TestCase):
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]

        outs = [out0, out1, out2, out3]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None]
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


Y
Yu Yang 已提交
458 459
if __name__ == '__main__':
    unittest.main()