test_variable.py 42.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18
import paddle
19
from paddle.fluid.framework import Program, convert_np_dtype_to_dtype_, default_main_program
20
import paddle
W
wopeizl 已提交
21
import paddle.fluid as fluid
22
import paddle.fluid.core as core
Y
Yu Yang 已提交
23 24
import numpy as np

25 26
paddle.enable_static()

Y
Yu Yang 已提交
27 28

class TestVariable(unittest.TestCase):
29

30 31 32
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
33
    def test_np_dtype_convert(self):
34
        DT = core.VarDesc.VarType
35
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
36 37 38 39 40 41 42
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
43 44
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46
    def test_var(self):
Y
Yu Yang 已提交
47
        b = default_main_program().current_block()
48 49 50 51
        w = b.create_var(dtype="float64",
                         shape=[784, 100],
                         lod_level=0,
                         name="fc.w")
52
        self.assertNotEqual(str(w), "")
53
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
54 55
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
56
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
57 58 59
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
60
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
61 62
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
63
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
64 65 66 67 68
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

69 70 71
        w = b.create_var(dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
                         shape=[1],
                         name="str_var")
72 73
        self.assertEqual(None, w.lod_level)

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
103 104 105
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
106 107
        var = b.create_var(name='step_scopes',
                           type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
108 109
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
110
    def _test_slice(self, place):
W
wopeizl 已提交
111 112 113 114 115
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
116
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
117 118 119 120

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
121
        nw = w[:, :]
W
wopeizl 已提交
122 123
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
124 125
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
126

H
Hongyu Liu 已提交
127 128 129 130 131 132 133
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
134 135 136 137 138 139

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
140 141 142 143
            tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                     [[19, 20, 21], [22, 23, 24],
                                      [25, 26, 27]]]).astype('float32')
W
wopeizl 已提交
144 145 146 147
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
148 149
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
150
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
151 152 153 154 155 156 157 158 159 160
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
161 162 163

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
164
            y_1 = y[:, 0]
W
wopeizl 已提交
165 166 167 168 169
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
170
            local_out = exe.run(main,
W
wopeizl 已提交
171
                                feed=feeder.feed([data]),
W
wopeizl 已提交
172 173
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
174 175
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
176 177
                                ])

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
                local_out[6],
                tensor_array.reshape((3, -1, 3))[:, :, -1])
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
            np.testing.assert_array_equal(local_out[8],
                                          tensor_array[:1, :1, :1])
            np.testing.assert_array_equal(local_out[9],
                                          tensor_array[:-1, :-1, :-1])
            np.testing.assert_array_equal(local_out[10],
                                          tensor_array[::-1, :1, :-1])
            np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                      -1:])
            np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                      2:, ::-1])
            np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                      -2:-1])
            np.testing.assert_array_equal(local_out[14],
                                          tensor_array[1:-1, 0:2, ::-1])
            np.testing.assert_array_equal(local_out[15],
                                          tensor_array[::-1, ::-1, ::-1])
W
wopeizl 已提交
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

258 259 260 261 262
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
263
            y = paddle.assign([1, 2, 3, 4])
264 265 266 267
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
268 269
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
270
            out7 = y[..., 0]
271 272

        exe = paddle.static.Executor(place)
273 274
        result = exe.run(prog,
                         fetch_list=[out1, out2, out3, out4, out5, out6, out7])
275

W
WeiXin 已提交
276 277
        expected = [
            data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...],
278 279
            data[[1, 0], [0, 0]], data[([1, 0], [0, 0])],
            np.array([1])
W
WeiXin 已提交
280
        ]
281 282 283 284 285

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
286 287
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
288
        self.assertTrue((result[6] == expected[6]).all())
289

290 291
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
292

293
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
294 295
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
296 297 298 299 300
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
301 302 303 304
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
305 306 307 308 309

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
310 311 312 313
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
314 315

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
316 317
        result = exe.run(
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7])
318

Z
zyfncg 已提交
319 320 321 322
        expected = [
            data[idx0], data[idx1], data[idx2], data[idx3], data[idx4],
            data[np_idx], data[data < 0.36], data[data > 0.6]
        ]
323 324 325 326 327

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
328 329 330 331
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
332

Z
zyfncg 已提交
333 334 335
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
336 337
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

356 357
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
358
        if core.is_compiled_with_cuda():
359 360 361 362 363 364
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
365
            self._test_slice_index_ellipsis(place)
366
            self._test_slice_index_list_bool(place)
367
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

385
    def test_fake_interface_only_api(self):
386 387 388
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
405
            var.stop_gradient = True
406 407 408 409 410 411
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
412

413 414 415
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

416 417 418 419 420
        var = b.create_var(name="var",
                           shape=[1, 1],
                           dtype="float32",
                           type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
                           persistable=True)
421 422 423 424 425 426

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
455 456 457
                x = paddle.static.data(name='x',
                                       shape=[3, 2, 1],
                                       dtype='float32')
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

475 476 477
                modified_value = np.random.uniform(-1, 1,
                                                   size=[3, 2,
                                                         1]).astype('float32')
478 479 480 481 482
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
483

484
class TestVariableSlice(unittest.TestCase):
485

486 487 488
    def setUp(self):
        np.random.seed(2022)

489 490 491 492 493 494 495 496 497
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
498
            out4 = x[..., None, :, None]
499

500
        outs = [out0, out1, out2, out3, out4]
501 502 503 504
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
505 506
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None],
            data[..., None, :, None]
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
546
class TestListIndex(unittest.TestCase):
547

548 549 550
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
551 552 553 554 555 556 557
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
558 559
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
560 561 562 563 564 565 566 567 568 569

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
570 571 572
                x = paddle.static.data(name='x',
                                       shape=array.shape,
                                       dtype='float32')
W
WeiXin 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

                y = x[index_mod]

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
590
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
617
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
618 619 620 621 622 623 624

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
625 626
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
627 628 629 630 631 632

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
633 634
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
635 636 637 638 639 640 641 642 643

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

644 645 646 647 648 649 650 651 652
            value = paddle.static.data(name='value',
                                       shape=value_np.shape,
                                       dtype='float32')
            index1 = paddle.static.data(name='index1',
                                        shape=index1.shape,
                                        dtype='int32')
            index2 = paddle.static.data(name='index2',
                                        shape=index2.shape,
                                        dtype='int32')
W
WeiXin 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

            y = x[index1, index2]

            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

            getitem_pp = exe.run(prog,
                                 feed={
                                     x.name: array,
                                     index1.name: index_mod1,
                                     index2.name: index_mod2
                                 },
                                 fetch_list=fetch_list)

677 678 679 680
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
                err_msg='\n numpy:{},\n paddle:{}'.format(y2, getitem_pp[0]))
W
WeiXin 已提交
681 682 683 684

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
685 686
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
687 688 689 690 691 692

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
693 694
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
695 696 697 698 699 700 701 702 703 704

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
705
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

730 731 732 733
        np.testing.assert_allclose(value_np,
                                   getitem_pp[0],
                                   rtol=1e-5,
                                   atol=1e-8)
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
762 763 764
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

765 766 767
        value = paddle.static.data(name='value',
                                   shape=value_np.shape,
                                   dtype='float32')
W
WeiXin 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
784 785 786 787 788 789
                setitem_pp = exe.run(prog,
                                     feed={
                                         x.name: array,
                                         value.name: value_np
                                     },
                                     fetch_list=fetch_list)
W
WeiXin 已提交
790 791
            return
        setitem_pp = exe.run(prog,
792 793 794 795
                             feed={
                                 x.name: array,
                                 value.name: value_np
                             },
W
WeiXin 已提交
796 797
                             fetch_list=fetch_list)

798
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
799 800 801 802 803

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
804 805
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
806 807 808 809 810

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
811 812
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
827 828
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
829 830 831 832 833

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
834 835
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
849 850
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
851 852 853 854 855

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
856 857
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
858 859 860
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
897 898 899
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
900 901
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
902 903

        index_shape = [2, 3, 4]
904 905 906 907
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
908 909

        value_shape = [4]
910 911
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')

                value = paddle.static.data(name='value',
                                           shape=value_np.shape,
                                           dtype='float32')
                index_1 = paddle.static.data(name='index_1',
                                             shape=index1.shape,
                                             dtype='int32')
                index_2 = paddle.static.data(name='index_2',
                                             shape=index2.shape,
                                             dtype='int32')
W
WeiXin 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

                x1[index_1, index_2] = value
                x2[index_1] = value

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

                setitem_pp = exe.run(prog,
                                     feed={
                                         x1.name: array,
                                         x2.name: array,
                                         value.name: value_np,
                                         index_1.name: index_mod1,
                                         index_2.name: index_mod2
                                     },
                                     fetch_list=fetch_list)
964 965 966 967 968 969 970 971 972 973
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array2, setitem_pp[0]))
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array3, setitem_pp[1]))
W
WeiXin 已提交
974 975 976 977 978 979 980
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
981 982
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
983 984

        index_shape = [2, 3, 4]
985 986 987 988
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1004 1005 1006 1007 1008 1009
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')
W
WeiXin 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

                setitem_pp = exe.run(prog,
1025 1026 1027 1028
                                     feed={
                                         x1.name: array,
                                         x2.name: array
                                     },
W
WeiXin 已提交
1029
                                     fetch_list=fetch_list)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array2, setitem_pp[0]))
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array3, setitem_pp[1]))

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        y_np1, setitem_pp[2]))
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        y_np2, setitem_pp[3]))
W
WeiXin 已提交
1051 1052 1053 1054 1055 1056 1057
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1058 1059
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
1060
        index_shape = [2, 3, 4]
1061 1062 1063 1064
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1079 1080 1081 1082
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np1, y_t1.numpy()))
W
WeiXin 已提交
1083 1084 1085 1086 1087 1088
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1089 1090 1091 1092
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np2, y_t2.numpy()))
W
WeiXin 已提交
1093 1094 1095 1096 1097

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1098 1099 1100 1101 1102
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
                    array1, tensor1.numpy()))
W
WeiXin 已提交
1103 1104 1105 1106 1107 1108 1109
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1110 1111 1112 1113 1114
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
                    array2, tensor2.numpy()))
W
WeiXin 已提交
1115 1116 1117 1118 1119 1120

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1121 1122
if __name__ == '__main__':
    unittest.main()