test_variable.py 42.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import unittest
W
WeiXin 已提交
18 19
from functools import reduce

20
import paddle
J
Jiabin Yang 已提交
21
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, _non_static_mode
22
import paddle
W
wopeizl 已提交
23
import paddle.fluid as fluid
H
Hongyu Liu 已提交
24
import paddle.fluid.layers as layers
25
import paddle.fluid.core as core
Y
Yu Yang 已提交
26 27
import numpy as np

28 29
paddle.enable_static()

Y
Yu Yang 已提交
30 31

class TestVariable(unittest.TestCase):
32

33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53 54
        w = b.create_var(dtype="float64",
                         shape=[784, 100],
                         lod_level=0,
                         name="fc.w")
55
        self.assertNotEqual(str(w), "")
56
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
57 58
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
59
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
60 61 62
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
63
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
64 65
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
66
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
67 68 69 70 71
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

72 73 74
        w = b.create_var(dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
                         shape=[1],
                         name="str_var")
75 76
        self.assertEqual(None, w.lod_level)

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
106 107 108
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
109 110
        var = b.create_var(name='step_scopes',
                           type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
111 112
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
113
    def _test_slice(self, place):
W
wopeizl 已提交
114 115 116 117 118
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
119
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
120 121 122 123

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
124
        nw = w[:, :]
W
wopeizl 已提交
125 126
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127 128
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
129

H
Hongyu Liu 已提交
130 131 132 133 134 135 136
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
137 138 139 140 141 142

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
143 144 145 146
            tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                     [[19, 20, 21], [22, 23, 24],
                                      [25, 26, 27]]]).astype('float32')
W
wopeizl 已提交
147 148 149 150
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
151 152
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
153
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
154 155 156 157 158 159 160 161 162 163
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
164 165 166

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
167
            y_1 = y[:, 0]
W
wopeizl 已提交
168 169 170 171 172
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
173
            local_out = exe.run(main,
W
wopeizl 已提交
174
                                feed=feeder.feed([data]),
W
wopeizl 已提交
175 176
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
177 178
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
179 180
                                ])

H
Hongyu Liu 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            self.assertTrue(
                np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
            self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
            self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
            self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
            self.assertTrue(
                np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
            self.assertTrue(
                np.array_equal(local_out[6],
                               tensor_array.reshape((3, -1, 3))[:, :, -1]))
            self.assertTrue(
                np.array_equal(local_out[7], tensor_array[:, :, :-1]))
            self.assertTrue(
                np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
            self.assertTrue(
                np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
            self.assertTrue(
                np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
            self.assertTrue(
                np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
W
wopeizl 已提交
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

264 265 266 267 268
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
269
            y = paddle.assign([1, 2, 3, 4])
270 271 272 273
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
274 275
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
276
            out7 = y[..., 0]
277 278

        exe = paddle.static.Executor(place)
279 280
        result = exe.run(prog,
                         fetch_list=[out1, out2, out3, out4, out5, out6, out7])
281

W
WeiXin 已提交
282 283
        expected = [
            data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...],
284 285
            data[[1, 0], [0, 0]], data[([1, 0], [0, 0])],
            np.array([1])
W
WeiXin 已提交
286
        ]
287 288 289 290 291

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
292 293
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
294
        self.assertTrue((result[6] == expected[6]).all())
295

296 297
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
298

299
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
300 301
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
302 303 304 305 306
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
307 308 309 310
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
311 312 313 314 315

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
316 317 318 319
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
320 321

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
322 323
        result = exe.run(
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7])
324

Z
zyfncg 已提交
325 326 327 328
        expected = [
            data[idx0], data[idx1], data[idx2], data[idx3], data[idx4],
            data[np_idx], data[data < 0.36], data[data > 0.6]
        ]
329 330 331 332 333

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
334 335 336 337
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
338

Z
zyfncg 已提交
339 340 341
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
342 343
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

362 363
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
364
        if core.is_compiled_with_cuda():
365 366 367 368 369 370
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
371
            self._test_slice_index_ellipsis(place)
372
            self._test_slice_index_list_bool(place)
373
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

391
    def test_fake_interface_only_api(self):
392 393 394
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
411
            var.stop_gradient = True
412 413 414 415 416 417
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
418

419 420 421
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

422 423 424 425 426
        var = b.create_var(name="var",
                           shape=[1, 1],
                           dtype="float32",
                           type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
                           persistable=True)
427 428 429 430 431 432

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
461 462 463
                x = paddle.static.data(name='x',
                                       shape=[3, 2, 1],
                                       dtype='float32')
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

481 482 483
                modified_value = np.random.uniform(-1, 1,
                                                   size=[3, 2,
                                                         1]).astype('float32')
484 485 486 487 488
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
489

490
class TestVariableSlice(unittest.TestCase):
491

492 493 494
    def setUp(self):
        np.random.seed(2022)

495 496 497 498 499 500 501 502 503
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
504
            out4 = x[..., None, :, None]
505

506
        outs = [out0, out1, out2, out3, out4]
507 508 509 510
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
511 512
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None],
            data[..., None, :, None]
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
552
class TestListIndex(unittest.TestCase):
553

554 555 556
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
557 558 559 560 561 562 563
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
564 565
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
566 567 568 569 570 571 572 573 574 575

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
576 577 578
                x = paddle.static.data(name='x',
                                       shape=array.shape,
                                       dtype='float32')
W
WeiXin 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

                y = x[index_mod]

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
                self.assertTrue(np.array_equal(getitem_np, getitem_pp[0]))

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
            self.assertTrue(np.array_equal(getitem_np, getitem_pp.numpy()))

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
631 632
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
633 634 635 636 637 638

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
639 640
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
641 642 643 644 645 646 647 648 649

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

650 651 652 653 654 655 656 657 658
            value = paddle.static.data(name='value',
                                       shape=value_np.shape,
                                       dtype='float32')
            index1 = paddle.static.data(name='index1',
                                        shape=index1.shape,
                                        dtype='int32')
            index2 = paddle.static.data(name='index2',
                                        shape=index2.shape,
                                        dtype='int32')
W
WeiXin 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

            y = x[index1, index2]

            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

            getitem_pp = exe.run(prog,
                                 feed={
                                     x.name: array,
                                     index1.name: index_mod1,
                                     index2.name: index_mod2
                                 },
                                 fetch_list=fetch_list)

683 684 685
            self.assertTrue(np.array_equal(y2, getitem_pp[0]),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                y2, getitem_pp[0]))
W
WeiXin 已提交
686 687 688 689

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
690 691
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
692 693 694 695 696 697

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
698 699
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
700 701 702 703 704 705 706 707 708 709 710 711

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
        self.assertTrue(np.array_equal(y.numpy(), y_np))

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

735 736 737 738
        np.testing.assert_allclose(value_np,
                                   getitem_pp[0],
                                   rtol=1e-5,
                                   atol=1e-8)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
767 768 769
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

770 771 772
        value = paddle.static.data(name='value',
                                   shape=value_np.shape,
                                   dtype='float32')
W
WeiXin 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
789 790 791 792 793 794
                setitem_pp = exe.run(prog,
                                     feed={
                                         x.name: array,
                                         value.name: value_np
                                     },
                                     fetch_list=fetch_list)
W
WeiXin 已提交
795 796
            return
        setitem_pp = exe.run(prog,
797 798 799 800
                             feed={
                                 x.name: array,
                                 value.name: value_np
                             },
W
WeiXin 已提交
801 802
                             fetch_list=fetch_list)

803
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
804 805 806 807 808

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
809 810
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
811 812 813 814 815

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
816 817
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
832 833
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
834 835 836 837 838

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
839 840
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
854 855
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
856 857 858 859 860

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
861 862
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
863 864 865
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
902 903 904
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
905 906
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
907 908

        index_shape = [2, 3, 4]
909 910 911 912
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
913 914

        value_shape = [4]
915 916
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')

                value = paddle.static.data(name='value',
                                           shape=value_np.shape,
                                           dtype='float32')
                index_1 = paddle.static.data(name='index_1',
                                             shape=index1.shape,
                                             dtype='int32')
                index_2 = paddle.static.data(name='index_2',
                                             shape=index2.shape,
                                             dtype='int32')
W
WeiXin 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

                x1[index_1, index_2] = value
                x2[index_1] = value

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

                setitem_pp = exe.run(prog,
                                     feed={
                                         x1.name: array,
                                         x2.name: array,
                                         value.name: value_np,
                                         index_1.name: index_mod1,
                                         index_2.name: index_mod2
                                     },
                                     fetch_list=fetch_list)
969 970 971 972 973 974
                self.assertTrue(np.array_equal(array2, setitem_pp[0]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array2, setitem_pp[0]))
                self.assertTrue(np.array_equal(array3, setitem_pp[1]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array3, setitem_pp[1]))
W
WeiXin 已提交
975 976 977 978 979 980 981
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
982 983
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
984 985

        index_shape = [2, 3, 4]
986 987 988 989
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1005 1006 1007 1008 1009 1010
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')
W
WeiXin 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

                setitem_pp = exe.run(prog,
1026 1027 1028 1029
                                     feed={
                                         x1.name: array,
                                         x2.name: array
                                     },
W
WeiXin 已提交
1030
                                     fetch_list=fetch_list)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                self.assertTrue(np.array_equal(array2, setitem_pp[0]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array2, setitem_pp[0]))
                self.assertTrue(np.array_equal(array3, setitem_pp[1]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array3, setitem_pp[1]))

                self.assertTrue(np.array_equal(y_np1, setitem_pp[2]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    y_np1, setitem_pp[2]))
                self.assertTrue(np.array_equal(y_np2, setitem_pp[3]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    y_np2, setitem_pp[3]))
W
WeiXin 已提交
1044 1045 1046 1047 1048 1049 1050
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1051 1052
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
1053
        index_shape = [2, 3, 4]
1054 1055 1056 1057
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1072 1073 1074
            self.assertTrue(np.array_equal(y_t1.numpy(), y_np1),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                y_np1, y_t1.numpy()))
W
WeiXin 已提交
1075 1076 1077 1078 1079 1080
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1081 1082 1083
            self.assertTrue(np.array_equal(y_t2.numpy(), y_np2),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                y_np2, y_t2.numpy()))
W
WeiXin 已提交
1084 1085 1086 1087 1088

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1089 1090 1091
            self.assertTrue(np.array_equal(tensor1.numpy(), array1),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                array1, tensor1.numpy()))
W
WeiXin 已提交
1092 1093 1094 1095 1096 1097 1098
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1099 1100 1101
            self.assertTrue(np.array_equal(tensor2.numpy(), array2),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                array2, tensor2.numpy()))
W
WeiXin 已提交
1102 1103 1104 1105 1106 1107

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1108 1109
if __name__ == '__main__':
    unittest.main()