executor_thread_worker.cc 21.8 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
H
heqiaozhi 已提交
16
#include <algorithm>
X
xjqbest 已提交
17
#include <utility>
W
Wang Guibao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
31
#include "paddle/fluid/platform/cpu_helper.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/platform/place.h"
33
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
34 35 36 37
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

H
heqiaozhi 已提交
38
#ifdef PADDLE_WITH_PSLIB
39
int DensePullThread::start() {
D
dongdaxiang 已提交
40 41 42
  _running = true;
  _t = std::thread(&DensePullThread::run, this);
  return 0;
43 44 45
}

void DensePullThread::run() {
D
dongdaxiang 已提交
46 47 48 49 50 51 52 53 54 55 56
  while (_running) {
    _pull_dense_status.resize(0);
    for (auto& t : _dense_variable_name) {
      if (check_update_param(t.first)) {
        auto status = pull_dense(t.first);
        _pull_dense_status.emplace_back(std::move(status));
        reset_thread_version(t.first);
      }
    }
    if (_pull_dense_status.size() != 0) {
      wait_all();
57
    }
H
heqiaozhi 已提交
58

D
dongdaxiang 已提交
59 60
    usleep(_sleep_time_ms * 1000);
  }
61 62
}
bool DensePullThread::check_update_param(uint64_t table_id) {
D
dongdaxiang 已提交
63 64 65 66 67 68 69 70 71 72
  {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    auto& version = _training_versions[table_id];
    _current_version[table_id] =
        *(std::min_element(version.begin(), version.end()));
  }
  if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
    return false;
  }
  return true;
73 74 75
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
D
dongdaxiang 已提交
76 77
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _last_versions[table_id] = _current_version[table_id];
78 79
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
D
dongdaxiang 已提交
80 81 82 83
  auto& regions = _regions[table_id];
  regions.clear();
  auto& variables = _dense_variable_name[table_id];
  regions.resize(variables.size());
H
heqiaozhi 已提交
84

D
dongdaxiang 已提交
85 86 87 88
  for (auto i = 0u; i < variables.size(); ++i) {
    auto& t = variables[i];
    Variable* var = _root_scope->FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
89

D
dongdaxiang 已提交
90 91 92 93 94
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
  return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
95 96 97
}

void DensePullThread::wait_all() {
D
dongdaxiang 已提交
98 99 100 101
  for (auto& t : _pull_dense_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
H
heqiaozhi 已提交
102
      LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
103
    }
D
dongdaxiang 已提交
104
  }
H
heqiaozhi 已提交
105

D
dongdaxiang 已提交
106 107 108 109
  if (_pull_dense_fail_times > 20) {
    LOG(FATAL) << "pull dense failed times more than 20 times";
    exit(-1);
  }
H
heqiaozhi 已提交
110

D
dongdaxiang 已提交
111
  _pull_dense_status.resize(0);
112 113
}

H
heqiaozhi 已提交
114 115
void DensePullThread::increase_thread_version(int thread_id,
                                              uint64_t table_id) {
D
dongdaxiang 已提交
116 117
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _training_versions[table_id][thread_id]++;
118
}
D
dongdaxiang 已提交
119
#endif
H
heqiaozhi 已提交
120

W
Wang Guibao 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
146 147 148
      root_scope_,
      platform::errors::PreconditionNotMet(
          "root_scope should be set before creating thread scope."));
W
Wang Guibao 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
187
  LOG(WARNING) << "concurrency capacity " << concurrency_cap;
W
Wang Guibao 已提交
188 189
  int thread_id = this->thread_id_;

T
Tao Luo 已提交
190
  if (static_cast<unsigned>(thread_id) < concurrency_cap) {
W
Wang Guibao 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

Y
Yu Yang 已提交
231 232
static void print_fetch_var(Scope* scope, const std::string& var_name) {
  auto& tensor = scope->FindVar(var_name)->Get<LoDTensor>();
W
Wang Guibao 已提交
233

Y
Yu Yang 已提交
234 235 236 237 238 239 240 241 242 243
#define PrintLoDTensorCallback(cpp_type, proto_type) \
  do {                                               \
    if (tensor.type() == proto_type) {               \
      print_lod_tensor<cpp_type>(var_name, tensor);  \
      return;                                        \
    }                                                \
  } while (0)

  _ForEachDataType_(PrintLoDTensorCallback);
  VLOG(1) << "print_fetch_var: unrecognized data type:" << tensor.type();
W
Wang Guibao 已提交
244 245
}

246 247 248 249
void ExecutorThreadWorker::TrainFilesWithTimer() {
  platform::SetNumThreads(1);
  SetDevice();
  thread_reader_->Start();
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
  while ((cur_batch = thread_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
      timeline.Start();
      ops_[i]->Run(*thread_scope_, place_);
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
    ++batch_cnt;
    thread_scope_->DropKids();
279
    if (thread_id_ == 0) {
D
dongdaxiang 已提交
280
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
281 282 283 284 285 286 287 288 289
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        int fetch_var_num = fetch_var_names_.size();
        for (int i = 0; i < fetch_var_num; ++i) {
          print_fetch_var(thread_scope_, fetch_var_names_[i]);
        }
D
dongdaxiang 已提交
290
        fprintf(stderr, "IO percent: %f\n", read_time / total_time);
291 292 293 294 295 296
      }
    }
    timeline.Start();
  }
}

W
Wang Guibao 已提交
297
void ExecutorThreadWorker::TrainFiles() {
298 299
  platform::SetNumThreads(1);

W
Wang Guibao 已提交
300
  // todo: configurable
D
dongdaxiang 已提交
301
  // SetDevice();
W
Wang Guibao 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

H
heqiaozhi 已提交
345
#ifdef PADDLE_WITH_PSLIB
346
//  AsyncExecutor
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

375 376
void AsyncExecutorThreadWorker::SetPSlibPtr(
    std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
D
dongdaxiang 已提交
377
  _pslib_ptr = pslib_ptr;
378
}
379

380 381
void AsyncExecutorThreadWorker::SetPullDenseThread(
    std::shared_ptr<DensePullThread> dpt) {
D
dongdaxiang 已提交
382
  _pull_dense_thread = dpt;
383
}
384

385
void AsyncExecutorThreadWorker::TrainOneNetwork() {
D
dongdaxiang 已提交
386
  PrepareParams();
H
heqiaozhi 已提交
387

D
dongdaxiang 已提交
388 389 390 391 392 393
  for (auto& op : ops_) {
    if (op->Type().find("sgd") != std::string::npos) {
      continue;
    }
    bool need_skip = false;
    for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
H
heqiaozhi 已提交
394
      if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) {
D
dongdaxiang 已提交
395 396 397 398 399 400
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op->Run(*thread_scope_, place_);
401
    }
D
dongdaxiang 已提交
402 403
  }
  UpdateParams();
404 405
}

406 407
void AsyncExecutorThreadWorker::SetParamConfig(
    AsyncWorkerParamConfig* param_config) {
D
dongdaxiang 已提交
408
  _param_config = param_config;
409 410 411
}

void AsyncExecutorThreadWorker::PrepareParams() {
D
dongdaxiang 已提交
412 413 414 415 416 417 418 419 420
  for (auto table_id : _param_config->sparse_table_id) {
    PullSparse(table_id);
    for (auto& t : _pull_sparse_status) {
      t.wait();
      auto status = t.get();
      if (status != 0) {
        LOG(ERROR) << "pull sparse failed, status[" << status << "]";
        exit(-1);
      }
421
    }
D
dongdaxiang 已提交
422 423
  }
  _pull_sparse_status.resize(0);
424

D
dongdaxiang 已提交
425 426 427
  for (auto table_id : _param_config->sparse_table_id) {
    FillSparse(table_id);
  }
428 429 430
}

void AsyncExecutorThreadWorker::UpdateParams() {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
  for (auto i : _param_config->sparse_table_id) {
    PushSparse(i);
  }
  for (auto i : _param_config->dense_table_id) {
    PushDense(i);
  }
  int32_t tmp_push_dense_wait_times = -1;
  int32_t tmp_push_sparse_wait_times = -1;
  static uint32_t push_dense_wait_times =
      static_cast<uint32_t>(tmp_push_dense_wait_times);
  static uint32_t push_sparse_wait_times =
      static_cast<uint32_t>(tmp_push_sparse_wait_times);

  if (_push_dense_status.size() >= push_dense_wait_times) {
    for (auto& t : _push_dense_status) {
      t.wait();
447
    }
448 449 450 451 452 453 454 455
    _push_dense_status.resize(0);
  }
  if (tmp_push_dense_wait_times == -1) {
    _push_dense_status.resize(0);
  }
  if (_push_sparse_status.size() >= push_sparse_wait_times) {
    for (auto& t : _push_sparse_status) {
      t.wait();
H
heqiaozhi 已提交
456
    }
457 458 459 460 461 462 463 464
    _push_sparse_status.resize(0);
  }
  if (tmp_push_sparse_wait_times == -1) {
    _push_sparse_status.resize(0);
  }
  for (auto dense_table_id : _param_config->dense_table_id) {
    _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
  }
465 466 467
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
D
dongdaxiang 已提交
468 469 470 471 472 473 474 475 476 477
  std::vector<paddle::ps::Region> regions;
  for (auto& t : _param_config->dense_gradient_variable_name[table_id]) {
    Variable* var = thread_scope_->FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
H
heqiaozhi 已提交
478 479 480

  auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
D
dongdaxiang 已提交
481
  _push_dense_status.push_back(std::move(status));
482 483 484
}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {
485 486 487 488 489 490 491
  auto& features = _features[table_id];
  auto& feature_value = _feature_value[table_id];
  auto fea_dim = _param_config->fea_dim;
  // slot id starts from 1
  features.clear();
  features.resize(0);
  features.reserve(MAX_FEASIGN_NUM);
H
heqiaozhi 已提交
492
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
493 494 495 496 497 498 499 500 501 502 503 504 505
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      // todo(colourful-tree): current trick - filter feasign=use_slot_mod(
      // bug: datafeed fill use_slot_mod for empty slot)
      if (ids[i] == 0u) {
        continue;
      }
      features.push_back(static_cast<uint64_t>(ids[i]));
H
heqiaozhi 已提交
506
    }
507
  }
H
heqiaozhi 已提交
508 509
  check_pull_push_memory(features, &feature_value, fea_dim);

510 511 512 513
  std::vector<float*> pull_feature_value;
  for (auto i = 0u; i < features.size(); ++i) {
    pull_feature_value.push_back(feature_value[i].data());
  }
H
heqiaozhi 已提交
514

515 516 517
  auto status = _pslib_ptr->_worker_ptr->pull_sparse(
      pull_feature_value.data(), table_id, features.data(), features.size());
  _pull_sparse_status.push_back(std::move(status));
H
heqiaozhi 已提交
518

519
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
520
  check_pull_push_memory(features, &push_g, fea_dim);
521
  collect_feasign_info(table_id);
522 523 524
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
525 526 527 528
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& fea_value = _feature_value[table_id];
H
heqiaozhi 已提交
529

530
  CHECK(features.size() > 0) << "feature size check failed";
H
heqiaozhi 已提交
531

532
  auto fea_idx = 0u;
H
heqiaozhi 已提交
533

534
  std::vector<float> init_value(fea_dim);
H
heqiaozhi 已提交
535 536

  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
537 538 539 540 541 542 543 544 545
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(
        _param_config->slot_input_vec[table_id][slot_idx - 1]);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
546 547
    float* ptr =
        tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
548 549
    memset(ptr, 0, sizeof(float) * len * slot_dim);
    auto& tensor_lod = tensor->lod()[0];
H
heqiaozhi 已提交
550

551 552
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
H
heqiaozhi 已提交
553

554 555
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
H
heqiaozhi 已提交
556 557
        memcpy(ptr + slot_dim * index, init_value.data() + 2,
               sizeof(float) * slot_dim);
558 559
        continue;
      }
H
heqiaozhi 已提交
560 561
      memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * slot_dim);
562
      fea_idx++;
563
    }
564
  }
565 566 567
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {
568 569 570 571
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
572 573 574 575
  check_pull_push_memory(features, &push_g, fea_dim);
  CHECK(push_g.size() == features.size() + 1)
      << "push_g size:" << push_g.size()
      << " features size:" << features.size();
576 577 578 579
  uint64_t fea_idx = 0u;
  auto& fea_info = _fea_info[table_id];
  int offset = 2;
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
H
heqiaozhi 已提交
580
  // slot_idx = 0 is label
581
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
H
heqiaozhi 已提交
582 583 584 585 586 587
    if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) ==
        _param_config->slot_alias_to_table.end()) {
      LOG(ERROR) << "ERROR slot_idx:" << slot_idx
                 << " name:" << feed_vec[slot_idx];
    } else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] !=
               table_id) {
588
      continue;
589
    }
590 591
    Variable* g_var = thread_scope_->FindVar(
        _param_config->gradient_var[table_id][slot_idx - 1]);
H
heqiaozhi 已提交
592 593 594
    CHECK(g_var != nullptr)
        << "var[" << _param_config->gradient_var[table_id][slot_idx - 1]
        << "] not found";
595 596
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
H
heqiaozhi 已提交
597 598 599
      LOG(ERROR) << "var["
                 << _param_config->gradient_var[table_id][slot_idx - 1]
                 << "] not found";
600 601 602
      exit(-1);
    }
    float* g = g_tensor->data<float>();
H
heqiaozhi 已提交
603

604 605 606 607 608 609 610 611
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << feed_vec[slot_idx] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
H
heqiaozhi 已提交
612 613 614 615
    CHECK(slot_dim * len == g_tensor->numel())
        << "len:" << len << " g_numel:" << g_tensor->numel();
    CHECK(len == tensor->numel()) << "len:" << len
                                  << "t_numel:" << tensor->numel();
616 617 618 619 620 621
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += slot_dim;
        continue;
      }
H
heqiaozhi 已提交
622
      memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
623
      push_g[fea_idx][0] = 1.0f;
H
heqiaozhi 已提交
624 625
      CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx
                                       << " size:" << fea_info.size();
626 627 628
      push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
      g += slot_dim;
      fea_idx++;
629
    }
630
  }
H
heqiaozhi 已提交
631 632
  CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx
                                    << " features size:" << features.size();
633
  CHECK_GT(features.size(), 0);
H
heqiaozhi 已提交
634

635 636 637 638 639
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < features.size(); ++i) {
    push_g_vec.push_back(push_g[i].data());
  }
  auto status = _pslib_ptr->_worker_ptr->push_sparse(
H
heqiaozhi 已提交
640 641
      table_id, features.data(), (const float**)push_g_vec.data(),
      features.size());
642
  _push_sparse_status.push_back(std::move(status));
643 644
}

H
heqiaozhi 已提交
645
void AsyncExecutorThreadWorker::collect_feasign_info(int table_id) {
646 647 648 649 650 651 652
  auto& fea_info = _fea_info[table_id];
  auto& feature = _features[table_id];
  fea_info.resize(feature.size());
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
  Variable* var = thread_scope_->FindVar(feed_vec[0]);
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label = tensor->data<int64_t>();
H
heqiaozhi 已提交
653

654 655 656
  int global_index = 0;
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
657
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
658
    int64_t* ids = tensor->data<int64_t>();
H
heqiaozhi 已提交
659

660 661 662 663 664
    int fea_idx = 0;
    for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
      for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
        if (ids[fea_idx] == 0u) {
          continue;
665
        }
666
        FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};
H
heqiaozhi 已提交
667

668 669
        fea_info[global_index++] = std::move(info);
      }
670
    }
671
  }
H
heqiaozhi 已提交
672 673
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
674 675 676
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
677 678 679 680
    const std::vector<uint64_t>& features,
    std::vector<std::vector<float>>* push_g, int dim) {
  push_g->resize(features.size() + 1);
  for (auto& t : *push_g) {
D
dongdaxiang 已提交
681 682
    t.resize(dim);
  }
683 684 685
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
686
    const std::vector<uint64_t>& features, std::vector<float*>* push_g,
D
dongdaxiang 已提交
687
    int dim) {
H
heqiaozhi 已提交
688 689 690
  if (features.size() > push_g->size()) {
    push_g->reserve(features.size() + 1);
    auto size = features.size() - push_g->size() + 1;
D
dongdaxiang 已提交
691 692
    for (auto i = 0u; i < size; ++i) {
      float* ptr = new float[dim];
H
heqiaozhi 已提交
693
      push_g->push_back(ptr);
694
    }
D
dongdaxiang 已提交
695
  }
696
}
H
heqiaozhi 已提交
697
#endif
698

W
Wang Guibao 已提交
699 700
}  // einit_modelnd namespace framework
}  // end namespace paddle