提交 bd1c1724 编写于 作者: H heqiaozhi 提交者: dongdaxiang

add ps_instance doc

上级 35ce6ac2
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
#windows treat symbolic file as a real file, which is different with unix
#We create a hidden file and compile it instead of origin source file.
function(windows_symbolic TARGET)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
......@@ -11,7 +11,7 @@ function(windows_symbolic TARGET)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
# only copy the xx.cu to .xx.cu when the content are modified
#only copy the xx.cu to.xx.cu when the content are modified
set(copy_flag 1)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc SOURCE_STR)
......@@ -32,7 +32,7 @@ endfunction()
add_subdirectory(ir)
add_subdirectory(details)
# ddim lib
#ddim lib
proto_library(framework_proto SRCS framework.proto)
proto_library(async_executor_proto SRCS data_feed.proto)
......@@ -89,8 +89,8 @@ nv_test(data_device_transform_test SRCS data_device_transform_test.cu
if(WITH_GPU)
if (WIN32)
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
#windows treat symbolic file as a real file, which is different with unix
#We create a hidden file and compile it instead of origin source file.
windows_symbolic(hidden_file SRCS data_type_transform.cu)
nv_library(data_type_transform SRCS .data_type_transform.cu DEPS tensor)
add_dependencies(data_type_transform hidden_file)
......@@ -137,7 +137,8 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator
nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
py_proto_compile(framework_py_proto SRCS framework.proto data_feed.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module.
#Generate an empty \
__init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
if (NOT WIN32)
......
......@@ -30,7 +30,7 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
#ifdef PADDLE_WITH_PSLIB
#include "pslib.h"
#include <pslib.h>
#endif
namespace paddle {
......@@ -70,50 +70,52 @@ void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers, // NOLINT
#ifdef PADDLE_WITH_PSLIB
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
_pslib_ptr =
std::shared_ptr<paddle::distributed::PSlib>(
new paddle::distributed::PSlib());
_pslib_ptr->init_server(dist_desc, index);
InitParamConfig();
_pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
new paddle::distributed::PSlib());
_pslib_ptr->init_server(dist_desc, index);
InitParamConfig();
}
void AsyncExecutor::InitWorker(const std::string& dist_desc,
const std::vector<uint64_t>& host_sign_list,
int node_num, int index) {
_pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
new paddle::distributed::PSlib());
_pslib_ptr->init_worker(
dist_desc, (uint64_t*)(host_sign_list.data()), node_num, index);
_pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
new paddle::distributed::PSlib());
_pslib_ptr->init_worker(dist_desc,
static_cast<uint64_t*>(host_sign_list.data()),
node_num, index);
InitParamConfig();
InitParamConfig();
}
uint64_t AsyncExecutor::StartServer() {
return _pslib_ptr->run_server();
}
uint64_t AsyncExecutor::StartServer() { return _pslib_ptr->run_server(); }
void AsyncExecutor::StopServer() {
_pslib_ptr->stop_server();
}
void AsyncExecutor::StopServer() { _pslib_ptr->stop_server(); }
void AsyncExecutor::GatherServers(
const std::vector<uint64_t>& host_sign_list, int node_num) {
_pslib_ptr->gather_servers((uint64_t*)(host_sign_list.data()), node_num);
void AsyncExecutor::GatherServers(const std::vector<uint64_t>& host_sign_list,
int node_num) {
_pslib_ptr->gather_servers(static_cast<uint64_t*>(host_sign_list.data()),
node_num);
}
void AsyncExecutor::InitParamConfig() {
for (int i = 0; i <
_pslib_ptr->get_param()->server_param(). \
downpour_server_param(). \
downpour_table_param_size();
for (int i = 0; i < _pslib_ptr->get_param()
->server_param()
.downpour_server_param()
.downpour_table_param_size();
++i) {
if (_pslib_ptr->get_param()->server_param(). \
downpour_server_param().downpour_table_param(i). \
table_class().find("SparseTable") != -1) {
_param_config.fea_dim = _pslib_ptr->get_param()->server_param(). \
downpour_server_param(). \
downpour_table_param(i). \
accessor().fea_dim();
if (_pslib_ptr->get_param()
->server_param()
.downpour_server_param()
.downpour_table_param(i)
.table_class()
.find("SparseTable") != -1) {
_param_config.fea_dim = _pslib_ptr->get_param()
->server_param()
.downpour_server_param()
.downpour_table_param(i)
.accessor()
.fea_dim();
break;
}
}
......@@ -122,28 +124,24 @@ void AsyncExecutor::InitParamConfig() {
_pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
_param_config.tmp_push_sparse_wait_times = static_cast<int32_t>(
_pslib_ptr->get_param()->trainer_param().push_sparse_per_batch());
for (auto t = 0u;
t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
for (auto t = 0u; t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
++t) {
_param_config.skip_op.push_back(
_pslib_ptr->get_param()->trainer_param().skip_op(t));
}
for (auto t = 0u;
t < _pslib_ptr->get_param()->trainer_param().sparse_table_size();
++t) {
t < _pslib_ptr->get_param()->trainer_param().sparse_table_size(); ++t) {
auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
std::vector<std::string> tmp_sparse_variable_name;
for (int i = 0u; i < table.slot_value_size(); ++i) {
tmp_sparse_variable_name.push_back(table.slot_value(i));
_param_config.slot_alias_to_table[table.slot_key(i)] =
table.table_id();
_param_config.slot_alias_to_table[table.slot_key(i)] = table.table_id();
}
std::vector<std::string> tmp_sparse_gradient_variable_name;
for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
tmp_sparse_gradient_variable_name.push_back(
table.slot_gradient(i));
tmp_sparse_gradient_variable_name.push_back(table.slot_gradient(i));
}
_param_config.slot_input_vec[table.table_id()] =
std::move(tmp_sparse_variable_name);
......@@ -151,10 +149,9 @@ void AsyncExecutor::InitParamConfig() {
std::move(tmp_sparse_gradient_variable_name);
_param_config.sparse_table_id.push_back(table.table_id());
}
for (auto t = 0u;
t < _pslib_ptr->get_param()->trainer_param().dense_table_size();
++t) {
t < _pslib_ptr->get_param()->trainer_param().dense_table_size(); ++t) {
auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
std::vector<std::string> tmp_dense_variable_name;
for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
......@@ -181,26 +178,25 @@ void AsyncExecutor::InitModel() {
Variable* var = root_scope_->FindVar(t);
CHECK(var != nullptr) << "var[" << t << "] not found";
LoDTensor* tensor = var->GetMutable<LoDTensor>();
float* g = tensor->data<float>();
CHECK(g != nullptr) << "var[" << t << "] value not initialized";
float init_range = 0.2;
int rown = tensor->dims()[0];
init_range /= sqrt(rown);
std::normal_distribution<float> ndistr(0.0, 1.0);
for (auto i = 0u; i < tensor->numel(); ++i) {
g[i] = ndistr(local_random_engine()) * init_range;
}
paddle::ps::Region reg(g, tensor->numel());
regions.emplace_back(std::move(reg));
}
auto push_status =
_pslib_ptr->_worker_ptr->push_dense_param(
regions.data(), regions.size(), table_id);
auto push_status = _pslib_ptr->_worker_ptr->push_dense_param(
regions.data(), regions.size(), table_id);
push_status.wait();
auto status = push_status.get();
if (status != 0) {
......@@ -225,14 +221,14 @@ void AsyncExecutor::SaveModel(const std::string& path) {
void AsyncExecutor::PrepareDenseThread(const std::string& mode) {
if (mode == "mpi") {
DensePullThreadParam param;
param.ps_client = _pslib_ptr->_worker_ptr;;
param.ps_client = _pslib_ptr->_worker_ptr;
param.threshold = 1;
param.training_thread_num = actual_thread_num;
param.root_scope = root_scope_;
param.dense_params = &_param_config.dense_variable_name;
_pull_dense_thread = std::shared_ptr<DensePullThread>(
new DensePullThread(param));
_pull_dense_thread =
std::shared_ptr<DensePullThread>(new DensePullThread(param));
_pull_dense_thread->start();
}
}
......@@ -243,8 +239,7 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
const std::vector<std::string>& filelist,
const int thread_num,
const std::vector<std::string>& fetch_var_names,
const std::string& mode,
const bool debug) {
const std::string& mode, const bool debug) {
std::vector<std::thread> threads;
auto& block = main_program.Block(0);
......@@ -293,9 +288,9 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
for (auto& worker : workers) {
#ifdef PADDLE_WITH_PSLIB
if (mode == "mpi") {
worker.reset(new AsyncExecutorThreadWorker);
worker.reset(new AsyncExecutorThreadWorker);
} else {
worker.reset(new ExecutorThreadWorker);
worker.reset(new ExecutorThreadWorker);
}
#else
worker.reset(new ExecutorThreadWorker);
......@@ -308,7 +303,6 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
fetch_var_names, root_scope_, thidx, debug);
}
// start executing ops in multiple threads
for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
threads.push_back(
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/executor_thread_worker.h"
#include <algorithm>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
......@@ -51,7 +52,7 @@ void DensePullThread::run() {
if (_pull_dense_status.size() != 0) {
wait_all();
}
usleep(_sleep_time_ms * 1000);
}
}
......@@ -77,12 +78,12 @@ std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
regions.clear();
auto& variables = _dense_variable_name[table_id];
regions.resize(variables.size());
for (auto i = 0u; i < variables.size(); ++i) {
auto& t = variables[i];
Variable* var = _root_scope->FindVar(t);
LoDTensor* tensor = var->GetMutable<LoDTensor>();
float* w = tensor->data<float>();
paddle::ps::Region reg(w, tensor->numel());
regions[i] = std::move(reg);
......@@ -95,21 +96,20 @@ void DensePullThread::wait_all() {
t.wait();
auto status = t.get();
if (status != 0) {
LOG(WARNING) << "pull dense failed times:" <<
++_pull_dense_fail_times;
LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
}
}
if (_pull_dense_fail_times > 20) {
LOG(FATAL) << "pull dense failed times more than 20 times";
exit(-1);
}
_pull_dense_status.resize(0);
}
void DensePullThread::increase_thread_version(
int thread_id, uint64_t table_id) {
void DensePullThread::increase_thread_version(int thread_id,
uint64_t table_id) {
std::lock_guard<std::mutex> lock(_mutex_for_version);
_training_versions[table_id][thread_id]++;
}
......@@ -174,7 +174,6 @@ void ExecutorThreadWorker::SetFetchVarNames(
fetch_var_names.end());
}
void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
return;
......@@ -344,15 +343,14 @@ void AsyncExecutorThreadWorker::SetPullDenseThread(
}
void AsyncExecutorThreadWorker::TrainOneNetwork() {
PrepareParams();
for (auto& op : ops_) {
if (op->Type().find("sgd") != std::string::npos) {
continue;
}
bool need_skip = false;
for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
if (op->Type().find(_param_config->skip_op[t]) !=
std::string::npos) {
if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) {
need_skip = true;
break;
}
......@@ -436,14 +434,13 @@ void AsyncExecutorThreadWorker::PushDense(int table_id) {
paddle::ps::Region reg(g, count);
regions.emplace_back(std::move(reg));
}
auto status = _pslib_ptr->_worker_ptr->push_dense(
regions.data(), regions.size(), table_id);
auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(),
regions.size(), table_id);
_push_dense_status.push_back(std::move(status));
}
void AsyncExecutorThreadWorker::PullSparse(int table_id) {
auto& features = _features[table_id];
auto& feature_value = _feature_value[table_id];
auto fea_dim = _param_config->fea_dim;
......@@ -451,8 +448,7 @@ void AsyncExecutorThreadWorker::PullSparse(int table_id) {
features.clear();
features.resize(0);
features.reserve(MAX_FEASIGN_NUM);
const std::vector<std::string>& feed_vec =
thread_reader_->GetUseSlotAlias();
const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
// slot_idx = 0 is label TODO
for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
......@@ -468,20 +464,20 @@ void AsyncExecutorThreadWorker::PullSparse(int table_id) {
features.push_back(static_cast<uint64_t>(ids[i]));
}
}
check_pull_push_memory(features, feature_value, fea_dim);
check_pull_push_memory(features, &feature_value, fea_dim);
std::vector<float*> pull_feature_value;
for (auto i = 0u; i < features.size(); ++i) {
pull_feature_value.push_back(feature_value[i].data());
}
auto status = _pslib_ptr->_worker_ptr->pull_sparse(
pull_feature_value.data(), table_id, features.data(), features.size());
_pull_sparse_status.push_back(std::move(status));
auto& push_g = _feature_push_value[table_id];
check_pull_push_memory(features, push_g, fea_dim);
check_pull_push_memory(features, &push_g, fea_dim);
collect_feasign_info(table_id);
}
......@@ -490,15 +486,14 @@ void AsyncExecutorThreadWorker::FillSparse(int table_id) {
auto fea_dim = _param_config->fea_dim;
auto& features = _features[table_id];
auto& fea_value = _feature_value[table_id];
CHECK(features.size() > 0) << "feature size check failed";
auto fea_idx = 0u;
std::vector<float> init_value(fea_dim);
const std::vector<std::string>& feed_vec =
thread_reader_->GetUseSlotAlias();
const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
// slot_idx = 0 is label TODO
for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
......@@ -508,22 +503,22 @@ void AsyncExecutorThreadWorker::FillSparse(int table_id) {
Variable* var_emb = thread_scope_->FindVar(
_param_config->slot_input_vec[table_id][slot_idx - 1]);
LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
float* ptr = tensor_emb->mutable_data<float>(
{len, slot_dim}, platform::CPUPlace());
float* ptr =
tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
memset(ptr, 0, sizeof(float) * len * slot_dim);
auto& tensor_lod = tensor->lod()[0];
LoD data_lod{tensor_lod};
tensor_emb->set_lod(data_lod);
for (auto index = 0u; index < len; ++index) {
if (ids[index] == 0u) {
memcpy(ptr + slot_dim * index,
init_value.data() + 2, sizeof(float) * slot_dim);
memcpy(ptr + slot_dim * index, init_value.data() + 2,
sizeof(float) * slot_dim);
continue;
}
memcpy(ptr + slot_dim * index,
fea_value[fea_idx].data() + 2, sizeof(float) * slot_dim);
memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2,
sizeof(float) * slot_dim);
fea_idx++;
}
}
......@@ -534,35 +529,38 @@ void AsyncExecutorThreadWorker::PushSparse(int table_id) {
auto fea_dim = _param_config->fea_dim;
auto& features = _features[table_id];
auto& push_g = _feature_push_value[table_id];
check_pull_push_memory(features, push_g, fea_dim);
CHECK(push_g.size() == features.size() + 1) <<
"push_g size:" << push_g.size() << " features size:" << features.size();
check_pull_push_memory(features, &push_g, fea_dim);
CHECK(push_g.size() == features.size() + 1)
<< "push_g size:" << push_g.size()
<< " features size:" << features.size();
uint64_t fea_idx = 0u;
auto& fea_info = _fea_info[table_id];
int offset = 2;
const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
// slot_idx = 0 is label
// slot_idx = 0 is label
for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
if (_param_config->slot_alias_to_table.find(
feed_vec[slot_idx]) == _param_config->slot_alias_to_table.end()) {
LOG(ERROR) << "ERROR slot_idx:" << slot_idx <<
" name:" << feed_vec[slot_idx];
} else if (
_param_config->slot_alias_to_table[feed_vec[slot_idx]] != table_id) {
if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) ==
_param_config->slot_alias_to_table.end()) {
LOG(ERROR) << "ERROR slot_idx:" << slot_idx
<< " name:" << feed_vec[slot_idx];
} else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] !=
table_id) {
continue;
}
Variable* g_var = thread_scope_->FindVar(
_param_config->gradient_var[table_id][slot_idx - 1]);
CHECK(g_var != nullptr) << "var[" <<
_param_config->gradient_var[table_id][slot_idx - 1] << "] not found";
CHECK(g_var != nullptr)
<< "var[" << _param_config->gradient_var[table_id][slot_idx - 1]
<< "] not found";
LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
if (g_tensor == NULL) {
LOG(ERROR) << "var[" <<
_param_config->gradient_var[table_id][slot_idx - 1] << "] not found";
LOG(ERROR) << "var["
<< _param_config->gradient_var[table_id][slot_idx - 1]
<< "] not found";
exit(-1);
}
float* g = g_tensor->data<float>();
Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
LoDTensor* tensor = var->GetMutable<LoDTensor>();
......@@ -571,42 +569,40 @@ void AsyncExecutorThreadWorker::PushSparse(int table_id) {
exit(-1);
}
int len = tensor->numel();
CHECK(slot_dim * len == g_tensor->numel()) <<
"len:" << len << " g_numel:" << g_tensor->numel();
CHECK(len == tensor->numel()) << "len:" <<
len << "t_numel:" << tensor->numel();
CHECK(slot_dim * len == g_tensor->numel())
<< "len:" << len << " g_numel:" << g_tensor->numel();
CHECK(len == tensor->numel()) << "len:" << len
<< "t_numel:" << tensor->numel();
int64_t* ids = tensor->data<int64_t>();
for (auto id_idx = 0u; id_idx < len; ++id_idx) {
if (ids[id_idx] == 0) {
g += slot_dim;
continue;
}
memcpy(push_g[fea_idx].data() + offset,
g, sizeof(float) * slot_dim);
memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
push_g[fea_idx][0] = 1.0f;
CHECK(fea_idx < fea_info.size()) << "fea_idx:" <<
fea_idx << " size:" << fea_info.size();
CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx
<< " size:" << fea_info.size();
push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
g += slot_dim;
fea_idx++;
}
}
CHECK(fea_idx == features.size()) << "fea_idx:" <<
fea_idx << " features size:" << features.size();
CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx
<< " features size:" << features.size();
CHECK_GT(features.size(), 0);
std::vector<float*> push_g_vec;
for (auto i = 0u; i < features.size(); ++i) {
push_g_vec.push_back(push_g[i].data());
}
auto status = _pslib_ptr->_worker_ptr->push_sparse(
table_id, features.data(),
(const float**)push_g_vec.data(), features.size());
table_id, features.data(), (const float**)push_g_vec.data(),
features.size());
_push_sparse_status.push_back(std::move(status));
}
void AsyncExecutorThreadWorker::collect_feasign_info(
int table_id) {
void AsyncExecutorThreadWorker::collect_feasign_info(int table_id) {
auto& fea_info = _fea_info[table_id];
auto& feature = _features[table_id];
fea_info.resize(feature.size());
......@@ -614,13 +610,13 @@ void AsyncExecutorThreadWorker::collect_feasign_info(
Variable* var = thread_scope_->FindVar(feed_vec[0]);
LoDTensor* tensor = var->GetMutable<LoDTensor>();
int64_t* label = tensor->data<int64_t>();
int global_index = 0;
for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
LoDTensor* tensor = var->GetMutable<LoDTensor>();
int64_t* ids = tensor->data<int64_t>();
int fea_idx = 0;
for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
......@@ -628,36 +624,33 @@ void AsyncExecutorThreadWorker::collect_feasign_info(
continue;
}
FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};
fea_info[global_index++] = std::move(info);
}
}
}
CHECK(global_index == feature.size()) <<
"expect fea info size:" << feature.size()
<< " real:" << global_index;
CHECK(global_index == feature.size())
<< "expect fea info size:" << feature.size() << " real:" << global_index;
}
void AsyncExecutorThreadWorker::check_pull_push_memory(
const std::vector<uint64_t>& features,
std::vector<std::vector<float>>& push_g,
int dim) {
push_g.resize(features.size() + 1);
for (auto& t : push_g) {
const std::vector<uint64_t>& features,
std::vector<std::vector<float>>* push_g, int dim) {
push_g->resize(features.size() + 1);
for (auto& t : *push_g) {
t.resize(dim);
}
}
void AsyncExecutorThreadWorker::check_pull_push_memory(
const std::vector<uint64_t>& features,
std::vector<float*>& push_g,
const std::vector<uint64_t>& features, std::vector<float*>* push_g,
int dim) {
if (features.size() > push_g.size()) {
push_g.reserve(features.size() + 1);
auto size = features.size() - push_g.size() + 1;
if (features.size() > push_g->size()) {
push_g->reserve(features.size() + 1);
auto size = features.size() - push_g->size() + 1;
for (auto i = 0u; i < size; ++i) {
float* ptr = new float[dim];
push_g.push_back(ptr);
push_g->push_back(ptr);
}
}
}
......
......@@ -26,7 +26,7 @@ limitations under the License. */
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#ifdef PADDLE_WITH_PSLIB
#include "pslib.h"
#include <pslib.h>
#endif
namespace paddle {
......@@ -34,75 +34,74 @@ namespace framework {
void CreateTensor(Variable* var, proto::VarType::Type var_type);
#ifdef PADDLE_WITH_PSLIB
const static uint32_t MAX_FEASIGN_NUM = 1000 * 100 * 100;
static const uint32_t MAX_FEASIGN_NUM = 1000 * 100 * 100;
struct AsyncWorkerParamConfig {
int slot_dim;
int fea_dim;
int32_t tmp_push_dense_wait_times;
int32_t tmp_push_sparse_wait_times;
std::vector<std::string> skip_op;
std::map<uint64_t, std::vector<std::string>> dense_variable_name;
std::map<uint64_t, std::vector<std::string>> dense_gradient_variable_name;
std::vector<int> dense_table_id;
std::vector<int> dense_table_id;
// fea_dim for each dense table
std::vector<uint32_t> dense_table_size;
std::vector<int> sparse_table_id;
std::vector<uint32_t> dense_table_size;
std::vector<int> sparse_table_id;
std::map<uint64_t, std::vector<std::string>> slot_input_vec;
std::map<uint64_t, std::vector<std::string>> gradient_var;
std::map<std::string, uint64_t> slot_alias_to_table;
};
struct DensePullThreadParam {
std::shared_ptr<paddle::ps::PSClient> ps_client;
int threshold;
int training_thread_num;
Scope* root_scope;
std::map<uint64_t, std::vector<std::string>>* dense_params;
int sleep_time_ms = 2;
std::shared_ptr<paddle::ps::PSClient> ps_client;
int threshold;
int training_thread_num;
Scope* root_scope;
std::map<uint64_t, std::vector<std::string>>* dense_params;
int sleep_time_ms = 2;
};
class DensePullThread {
public:
explicit DensePullThread(const DensePullThreadParam& param) :
_running(false) {
explicit DensePullThread(const DensePullThreadParam& param)
: _running(false) {
_ps_client = param.ps_client;
_threshold = param.threshold;
_thread_num = param.training_thread_num;
_root_scope = param.root_scope;
_sleep_time_ms = param.sleep_time_ms;
for (auto& t : *param.dense_params) {
_dense_variable_name[t.first].insert(
_dense_variable_name[t.first].end(),
t.second.begin(), t.second.end());
_dense_variable_name[t.first].insert(_dense_variable_name[t.first].end(),
t.second.begin(), t.second.end());
_training_versions[t.first].resize(_thread_num, 0);
_last_versions[t.first] = 0;
_current_version[t.first] = 0;
}
}
int start();
void stop() {
if (_running) {
_running = false;
_t.join();
}
}
void increase_thread_version(int thread_id, uint64_t table_id);
void reset_thread_version(uint64_t table_id);
std::future<int32_t> pull_dense(uint64_t table_id);
void pull_dense2(uint64_t table_id);
void wait_all();
private:
void run();
bool check_update_param(uint64_t table_id);
private:
std::shared_ptr<paddle::ps::PSClient> _ps_client;
int _thread_num;
......@@ -113,33 +112,33 @@ class DensePullThread {
std::map<uint64_t, uint64_t> _last_versions;
std::map<uint64_t, uint64_t> _current_version;
std::mutex _mutex_for_version;
std::mutex _mutex_for_version;
std::map<uint64_t, std::vector<uint64_t>> _training_versions;
std::map<uint64_t, std::vector<std::string>> _dense_variable_name;
std::thread _t;
std::vector<::std::future<int32_t>> _pull_dense_status;
std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
uint32_t _pull_dense_fail_times = 0;
std::vector<float> _base_norm_param;
std::vector<float> _mean;
std::vector<float> _scale;
uint32_t _pull_dense_fail_times = 0;
std::vector<float> _base_norm_param;
std::vector<float> _mean;
std::vector<float> _scale;
float _squared_sum_epsilon = 1e-4;
std::mutex _mutex_for_mean_scale;
float _total_batch_num = 0;
};
#endif
class ExecutorThreadWorker {
public:
ExecutorThreadWorker()
: thread_id_(-1), root_scope_(NULL), thread_scope_(NULL), debug_(false) {}
ExecutorThreadWorker()
: thread_id_(-1), root_scope_(NULL), thread_scope_(NULL), debug_(false) {}
virtual ~ExecutorThreadWorker() {}
void CreateThreadResource(const framework::ProgramDesc& program,
const paddle::platform::Place& place);
void SetThreadId(int tid);
......@@ -161,10 +160,8 @@ ExecutorThreadWorker()
#ifdef PADDLE_WITH_PSLIB
virtual void SetPSlibPtr(
std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {}
virtual void SetPullDenseThread(
std::shared_ptr<DensePullThread> dpt) {}
virtual void SetParamConfig(
AsyncWorkerParamConfig * param_config) {}
virtual void SetPullDenseThread(std::shared_ptr<DensePullThread> dpt) {}
virtual void SetParamConfig(AsyncWorkerParamConfig* param_config) {}
#endif
private:
......@@ -195,7 +192,7 @@ ExecutorThreadWorker()
};
#ifdef PADDLE_WITH_PSLIB
class AsyncExecutorThreadWorker: public ExecutorThreadWorker {
class AsyncExecutorThreadWorker : public ExecutorThreadWorker {
public:
AsyncExecutorThreadWorker() {}
virtual ~AsyncExecutorThreadWorker() {}
......@@ -210,40 +207,35 @@ class AsyncExecutorThreadWorker: public ExecutorThreadWorker {
void FillSparse(int table_id);
void PushSparse(int table_id);
void PushDense(int table_id);
void check_pull_push_memory(
const std::vector<uint64_t>& features,
std::vector<float*>& push_g,
int dim);
void check_pull_push_memory(const std::vector<uint64_t>& features,
std::vector<std::vector<float>>& push_g,
int dim);
std::vector<float*>* push_g, int dim);
void check_pull_push_memory(const std::vector<uint64_t>& features,
std::vector<std::vector<float>>* push_g, int dim);
void collect_feasign_info(int table_id);
private:
struct FeasignInfo {
uint32_t slot;
uint32_t ins;
int64_t label;
};
std::map<uint64_t, std::vector<uint64_t>> _features;
std::map<uint64_t, std::vector<FeasignInfo>> _fea_info;
std::map<uint64_t, std::vector<uint64_t>> _features;
std::map<uint64_t, std::vector<FeasignInfo>> _fea_info;
std::map<uint64_t, std::vector<std::vector<float>>> _feature_value;
std::map<uint64_t, std::vector<std::vector<float>>> _feature_push_value;
std::shared_ptr<paddle::distributed::PSlib> _pslib_ptr;
std::shared_ptr<DensePullThread> _pull_dense_thread;
std::vector<::std::future<int32_t>> _pull_sparse_status;
std::vector<::std::future<int32_t>> _pull_dense_status;
std::vector<::std::future<int32_t>> _push_sparse_status;
std::vector<::std::future<int32_t>> _push_dense_status;
AsyncWorkerParamConfig* _param_config;
std::shared_ptr<paddle::distributed::PSlib> _pslib_ptr;
std::shared_ptr<DensePullThread> _pull_dense_thread;
std::vector<::std::future<int32_t>> _pull_sparse_status;
std::vector<::std::future<int32_t>> _pull_dense_status;
std::vector<::std::future<int32_t>> _push_sparse_status;
std::vector<::std::future<int32_t>> _push_dense_status;
AsyncWorkerParamConfig* _param_config;
};
#endif
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册