executor_thread_worker.cc 22.4 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
int DensePullThread::start() {
    _running = true;
    _t = std::thread(&DensePullThread::run, this);
    return 0;
}

void DensePullThread::run() {
    while (_running) {
        _pull_dense_status.resize(0);
        for (auto& t : _dense_variable_name) {
            if (check_update_param(t.first)) {
                auto status = pull_dense(t.first);
                _pull_dense_status.emplace_back(std::move(status));
                reset_thread_version(t.first);
            }
        }
        if (_pull_dense_status.size() != 0) {
            wait_all();
        }

        usleep(_sleep_time_ms * 1000);
    }
}
bool DensePullThread::check_update_param(uint64_t table_id) {
    {
        std::lock_guard<std::mutex> lock(_mutex_for_version);
        auto& version = _training_versions[table_id];
        _current_version[table_id] = *(std::min_element(version.begin(), version.end()));
    }
    if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
        return false;
    }
    return true;
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    _last_versions[table_id] = _current_version[table_id];
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
    auto& regions = _regions[table_id];
    regions.clear();
    auto& variables = _dense_variable_name[table_id];
    regions.resize(variables.size());

    for (auto i = 0u; i < variables.size(); ++i) {
        auto& t = variables[i];
        Variable* var = _root_scope->FindVar(t);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();

        float* w = tensor->data<float>();
        paddle::ps::Region reg(w, tensor->numel());
        regions[i] = std::move(reg);
    }
    return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
}

void DensePullThread::wait_all() {
    for (auto& t : _pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
            LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
        }
    }

    if (_pull_dense_fail_times > 20) {
        LOG(FATAL) << "pull dense failed times more than 20 times";
        exit(-1);
    }

    _pull_dense_status.resize(0);
}

void DensePullThread::increase_thread_version(int thread_id, uint64_t table_id) {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    _training_versions[table_id][thread_id]++;
}
    
W
Wang Guibao 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

172 173 174 175 176
void ExecutorThreadWorker::SetPSlibPtr(std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {

}


W
Wang Guibao 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
  int thread_id = this->thread_id_;

  if (thread_id < concurrency_cap) {
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

void print_fetch_var(Scope* scope, std::string var_name) {
  const LoDTensor& tensor = scope->FindVar(var_name)->Get<LoDTensor>();

  if (std::type_index(tensor.type()) ==
      std::type_index(typeid(platform::float16))) {
    print_lod_tensor<platform::float16>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(float))) {
    print_lod_tensor<float>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(double))) {
    print_lod_tensor<double>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(int))) {
    print_lod_tensor<int>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int64_t))) {
    print_lod_tensor<int64_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(bool))) {
    print_lod_tensor<bool>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(uint8_t))) {
    print_lod_tensor<uint8_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int16_t))) {
    print_lod_tensor<int16_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int8_t))) {
    print_lod_tensor<int8_t>(var_name, tensor);
  } else {
    VLOG(1) << "print_fetch_var: unrecognized data type:"
            << tensor.type().name();
  }

  return;
}

void ExecutorThreadWorker::TrainFiles() {
  // todo: configurable
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
//AsyncExecutor
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void AsyncExecutorThreadWorker::SetPSlibPtr(std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
    _pslib_ptr = pslib_ptr;
}
void AsyncExecutorThreadWorker::SetPullDenseThread(std::shared_ptr<DensePullThread> dpt) {
    _pull_dense_thread = dpt;
}
void AsyncExecutorThreadWorker::TrainOneNetwork() {
    PrepareParams();

    for (auto& op : ops_) {
        if (op->Type().find("sgd") != std::string::npos) {
            continue;
        }
        op->Run(*thread_scope_, place_);
    }

    UpdateParams();
}

void AsyncExecutorThreadWorker::BindingSlotVariableMemory() {
    /*
    std::vector<int> ins_slot_offset(batch_size + 1, 0);
    for (auto i = 1u; i <= batch_size; ++i) {
        ins_slot_offset[i] += ins_slot_offset[i - 1] + slot_dim;
    }

    std::vector<int> tensor_lod(batch_size + 1, 0);
    for (auto i = 1u; i <= batch_size; ++i) {
        tensor_lod[i] += tensor_lod[i - 1] + 1;
    }

    auto& used_slots = reader->get_use_slot_alias();
    slot_input_vec.resize(used_slots.size() - 1);
    for (auto slot_idx = 1u; slot_idx < used_slots.size(); ++slot_idx) {
        auto var = slot_input_variable_name[slot_idx];

        auto v = thread_scope->FindVar(var);
        CHECK(v != nullptr) << "var[" << var << "] not found";

        LoDTensor* tensor = v->GetMutable<LoDTensor>();
        float* tensor_ptr = tensor->mutable_data<float>({batch_size, slot_dim}, platform::CPUPlace());
        memset(tensor_ptr, 0, sizeof(float) * ins_slot_offset.back());

        LoD data_lod{tensor_lod};
        tensor->set_lod(data_lod);

        slot_input_vec[slot_idx - 1].reset(tensor);
    }
    */
}
void AsyncExecutorThreadWorker::SetParamConfig(AsyncWorkerParamConfig* pc) {
    _param_config = pc;
}

void AsyncExecutorThreadWorker::PrepareParams() {
    int table_id = 0; //TODO
    PullSparse(table_id);
    for (auto& t : _pull_sparse_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
            LOG(ERROR) << "pull sparse failed, status[" << status << "]";
            exit(-1);
        }
    }
    _pull_sparse_status.resize(0);

    FillSparse(table_id);
}

void AsyncExecutorThreadWorker::UpdateParams() {
    //for (auto i = 0u; i < GlobalConfig::instance().dense_table_id.size(); ++i) {//TODO
    for (int i = 0; i < 1; ++i) {
        PushSparse(i); 
    }
    //for (auto i = 0u; i < GlobalConfig::instance().dense_table_id.size(); ++i) {//TODO
    for (int i = 1; i < 2; ++i) {
        PushDense(i);
    }
    int32_t tmp_push_dense_wait_times = _param_config->tmp_push_dense_wait_times; //TODO
    int32_t tmp_push_sparse_wait_times = _param_config->tmp_push_sparse_wait_times; //TODO
    static uint32_t push_dense_wait_times = static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times = static_cast<uint32_t>(tmp_push_sparse_wait_times);

    if (_push_dense_status.size() >= push_dense_wait_times) {
        for (auto& t : _push_dense_status) {
            t.wait();
        }
        _push_dense_status.resize(0);
    }
    if (tmp_push_dense_wait_times == -1) {
        _push_dense_status.resize(0);
    }

    if (_push_sparse_status.size() >= push_sparse_wait_times) {
        for (auto& t : _push_sparse_status) {
            t.wait();
        }
        _push_sparse_status.resize(0);
    }
    if (tmp_push_sparse_wait_times == -1) {
        _push_sparse_status.resize(0);
    }

    //for (auto dense_table_id : GlobalConfig::instance().dense_table_id) {//TODO
        int dense_table_id = 1;
        _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
    //}
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
    //auto table_id = GlobalConfig::instance().dense_table_id[table_id_index]; TODO

    std::vector<paddle::ps::Region> regions;
    //auto& variables = GlobalConfig::instance().dense_gradient_variable_name[table_id];
    std::vector<std::string> variables;
    for (auto& t : variables) {
        Variable* var = thread_scope_->FindVar(t);
        CHECK(var != nullptr) << "var[" << t << "] not found";
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int count = tensor->numel();
        float* g = tensor->data<float>();
        paddle::ps::Region reg(g, count);
        regions.emplace_back(std::move(reg));
    }

    auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(), regions.size(), table_id);
    _push_dense_status.push_back(std::move(status));

}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {


    auto& features = _features[table_id];
    auto& feature_value = _feature_value[table_id];
    auto fea_dim = _param_config->fea_dim; //TODO
    // slot id starts from 1
    features.clear();
    features.resize(0);
    features.reserve(MAX_FEASIGN_NUM);

    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
    // slot_idx = 0 is label TODO
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int64_t* ids = tensor->data<int64_t>();
        int len = tensor->numel();
        for (auto i = 0u; i < len; ++i) {
            //todo: current trick - filter feasign=use_slot_mod(bug: datafeed fill use_slot_mod for empty slot)
            if (ids[i] == 0u) {
                continue;
            }
            features.push_back(static_cast<uint64_t>(ids[i]));
        }
    }

    check_pull_push_memory(features, feature_value, fea_dim);

    std::vector<float*> pull_feature_value;
    for (auto i = 0u; i < features.size(); ++i) {
        pull_feature_value.push_back(feature_value[i].data());
    }

    auto status = _pslib_ptr->_worker_ptr->pull_sparse(
            pull_feature_value.data(), table_id, features.data(), features.size());
    _pull_sparse_status.push_back(std::move(status));

    //to save time
    auto& push_g = _feature_push_value[table_id];
    check_pull_push_memory(features, push_g, fea_dim);

    //binding_slot_embed_with_concat(); TODO
    collect_feasign_info(table_id); //TODO
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
    auto slot_dim = _param_config->slot_dim; // TODO
    auto fea_dim = _param_config->fea_dim; //TODO
    auto& features = _features[table_id];
    auto& fea_value = _feature_value[table_id];

    CHECK(features.size() > 0) << "feature size check failed";

    auto fea_idx = 0u;

    std::vector<float> init_value(fea_dim);

    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
    // slot_idx = 0 is label TODO
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int64_t* ids = tensor->data<int64_t>();
        int len = tensor->numel();
        
        Variable* var_emb = thread_scope_->FindVar(_param_config->slot_input_vec[slot_idx - 1]);
        LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
        float* ptr = tensor_emb->data<float>();

        for (auto index = 0u; index < len; ++index){
            //if (_current_train_job.use_cvm_feature()) {
            //    if (ids[index] == 0u) {
            //        memcpy(ptr + slot_dim * index, init_value.data(), sizeof(float) * slot_dim);
            //        continue;
            //    }
            //    memcpy(ptr + slot_dim * index, fea_value[fea_idx].data(), sizeof(float) * slot_dim);
            //    (ptr + slot_dim * index)[0] = log((ptr + slot_dim * index)[0] + 1);
            //    (ptr + slot_dim * index)[1] = log((ptr + slot_dim * index)[1] + 1) - (ptr + slot_dim * index)[0];
            //    fea_idx++;
            //} else {
                if (ids[index] == 0u) {
                    memcpy(ptr + slot_dim * index, init_value.data() + 2, sizeof(float) * slot_dim);
                    continue;
                }
                memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2, sizeof(float) * slot_dim);
                fea_idx++;
            //}
        }
    }
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {

    auto slot_dim = _param_config->slot_dim; //TODO
    auto fea_dim = _param_config->fea_dim;//_current_train_job.fea_dim();TODO
    auto& features = _features[table_id];
    //std::vector<std::string> gradient_var;
    //auto& gradient_var = GlobalConfig::instance().input_gradient_variable_name; //TODO
    auto& push_g = _feature_push_value[table_id];
    check_pull_push_memory(features, push_g, fea_dim);
    uint64_t fea_idx = 0u;
    auto& fea_info = _fea_info[table_id]; //TODO
    int offset = 0;
    //if (!_current_train_job.use_cvm_feature()) { //TODO
        offset = 2;
    //}

    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();

    // slot_idx = 0 is label TODO
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        if (_slot_alias_to_table[feed_vec[slot_idx]] != table_id) {
            continue;
        }
        Variable* g_var = thread_scope_->FindVar(_param_config->gradient_var[slot_idx - 1]);
        LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
        //int count = g_tensor->numel();
        float* g = g_tensor->data<float>();
        /*
        if (FLAGS_scale_sparse_gradient_with_batch_size) {
            Eigen::Map<Eigen::MatrixXf> g_mat(g, 1, tensor->numel());
            g_mat *= _batch_size;
        }
        */

        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int len = tensor->lod()[0].back();
        //assert(slot_dim * len == count);
        int64_t* ids = tensor->data<int64_t>();
        for (auto id_idx = 0u; id_idx < len; ++id_idx){
            if (ids[id_idx] == 0) {
                g += slot_dim;
                continue;
            }
            memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
            push_g[fea_idx][0] = 1.0f;
            push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
            g += slot_dim;
            fea_idx++;
        }
    }
    assert(fea_idx == features.size());
    CHECK(features.size() > 0);

    std::vector<float*> push_g_vec;
    for (auto i = 0u; i < features.size(); ++i) {
        push_g_vec.push_back(push_g[i].data());
    }
    auto status = _pslib_ptr->_worker_ptr->push_sparse(
            table_id, features.data(), (const float**)push_g_vec.data(), features.size());
    _push_sparse_status.push_back(std::move(status));
}

void AsyncExecutorThreadWorker::collect_feasign_info(
        int table_id) {
    auto& fea_info = _fea_info[table_id];
    auto& feature = _features[table_id];
    fea_info.resize(feature.size());

    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
    Variable* var = thread_scope_->FindVar(feed_vec[0]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* label = tensor->data<int64_t>();

    int global_index = 0;
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int64_t* ids = tensor->data<int64_t>();
   
        int fea_idx = 0;
        for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
            for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
                if (ids[fea_idx] == 0u) {
                    continue;
                }
                FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};

                fea_info[global_index++] = std::move(info);
            }
        }
    }
    CHECK(global_index == feature.size()) << "expect fea info size:" << feature.size()
        << " real:" << global_index;
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
        std::vector<uint64_t>& features,
        std::vector<std::vector<float>>& push_g,
        int dim) {
    push_g.resize(features.size() + 1);
    for (auto& t : push_g) {
        t.resize(dim);
    }
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
        std::vector<uint64_t>& features,
        std::vector<float*>& push_g,
        int dim) {
    if (features.size() > push_g.size()) {
        push_g.reserve(features.size() + 1);
        auto size = features.size() - push_g.size() + 1;
        for (auto i = 0u; i < size; ++i) {
            float* ptr = new float[dim];
            push_g.push_back(ptr);
        }
    }
}

W
Wang Guibao 已提交
678 679
}  // einit_modelnd namespace framework
}  // end namespace paddle