Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3c01cdef
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c01cdef
编写于
12月 13, 2018
作者:
H
heqiaozhi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine executor_thread_worker.cc & executor_thread_worker.h code style
上级
c71279bc
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
15 addition
and
73 deletion
+15
-73
paddle/fluid/framework/executor_thread_worker.cc
paddle/fluid/framework/executor_thread_worker.cc
+15
-71
paddle/fluid/framework/executor_thread_worker.h
paddle/fluid/framework/executor_thread_worker.h
+0
-2
未找到文件。
paddle/fluid/framework/executor_thread_worker.cc
浏览文件 @
3c01cdef
...
...
@@ -303,7 +303,7 @@ void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
root_scope_
=
g_scope
;
}
//AsyncExecutor
//
AsyncExecutor
void
AsyncExecutorThreadWorker
::
TrainFiles
()
{
SetDevice
();
...
...
@@ -330,7 +330,6 @@ void AsyncExecutorThreadWorker::TrainFiles() {
print_fetch_var
(
thread_scope_
,
fetch_var_names_
[
i
]);
}
// end for (int i = 0...)
}
// end while ()
LOG
(
ERROR
)
<<
"TRAIN DONE"
;
}
void
AsyncExecutorThreadWorker
::
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
)
{
...
...
@@ -360,44 +359,12 @@ void AsyncExecutorThreadWorker::TrainOneNetwork() {
UpdateParams
();
}
void
AsyncExecutorThreadWorker
::
BindingSlotVariableMemory
()
{
/*
std::vector<int> ins_slot_offset(batch_size + 1, 0);
for (auto i = 1u; i <= batch_size; ++i) {
ins_slot_offset[i] += ins_slot_offset[i - 1] + slot_dim;
}
std::vector<int> tensor_lod(batch_size + 1, 0);
for (auto i = 1u; i <= batch_size; ++i) {
tensor_lod[i] += tensor_lod[i - 1] + 1;
}
auto& used_slots = reader->get_use_slot_alias();
slot_input_vec.resize(used_slots.size() - 1);
for (auto slot_idx = 1u; slot_idx < used_slots.size(); ++slot_idx) {
auto var = slot_input_variable_name[slot_idx];
auto v = thread_scope->FindVar(var);
CHECK(v != nullptr) << "var[" << var << "] not found";
LoDTensor* tensor = v->GetMutable<LoDTensor>();
float* tensor_ptr = tensor->mutable_data<float>({batch_size, slot_dim}, platform::CPUPlace());
memset(tensor_ptr, 0, sizeof(float) * ins_slot_offset.back());
LoD data_lod{tensor_lod};
tensor->set_lod(data_lod);
slot_input_vec[slot_idx - 1].reset(tensor);
}
*/
}
void
AsyncExecutorThreadWorker
::
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
)
{
_param_config
=
param_config
;
}
void
AsyncExecutorThreadWorker
::
PrepareParams
()
{
//int table_id = 0; //TODO
for
(
auto
table_id
:
_param_config
->
sparse_table_id
)
{
PullSparse
(
table_id
);
for
(
auto
&
t
:
_pull_sparse_status
)
{
...
...
@@ -423,9 +390,7 @@ void AsyncExecutorThreadWorker::UpdateParams() {
for
(
auto
i
:
_param_config
->
dense_table_id
)
{
PushDense
(
i
);
}
// _param_config->tmp_push_dense_wait_times
int32_t
tmp_push_dense_wait_times
=
-
1
;
// _param_config->tmp_push_sparse_wait_times
int32_t
tmp_push_sparse_wait_times
=
-
1
;
static
uint32_t
push_dense_wait_times
=
static_cast
<
uint32_t
>
(
tmp_push_dense_wait_times
);
...
...
@@ -509,17 +474,15 @@ void AsyncExecutorThreadWorker::PullSparse(int table_id) {
pull_feature_value
.
data
(),
table_id
,
features
.
data
(),
features
.
size
());
_pull_sparse_status
.
push_back
(
std
::
move
(
status
));
//to save time
auto
&
push_g
=
_feature_push_value
[
table_id
];
check_pull_push_memory
(
features
,
push_g
,
fea_dim
);
//binding_slot_embed_with_concat(); TODO
collect_feasign_info
(
table_id
);
//TODO
collect_feasign_info
(
table_id
);
}
void
AsyncExecutorThreadWorker
::
FillSparse
(
int
table_id
)
{
auto
slot_dim
=
_param_config
->
slot_dim
;
// TODO
auto
fea_dim
=
_param_config
->
fea_dim
;
//TODO
auto
slot_dim
=
_param_config
->
slot_dim
;
auto
fea_dim
=
_param_config
->
fea_dim
;
auto
&
features
=
_features
[
table_id
];
auto
&
fea_value
=
_feature_value
[
table_id
];
...
...
@@ -544,53 +507,35 @@ void AsyncExecutorThreadWorker::FillSparse(int table_id) {
LoD
data_lod
{
tensor_lod
};
tensor_emb
->
set_lod
(
data_lod
);
//float* ptr = tensor_emb->data<float>();
for
(
auto
index
=
0u
;
index
<
len
;
++
index
){
//if (_current_train_job.use_cvm_feature()) {
// if (ids[index] == 0u) {
// memcpy(ptr + slot_dim * index, init_value.data(), sizeof(float) * slot_dim);
// continue;
// }
// memcpy(ptr + slot_dim * index, fea_value[fea_idx].data(), sizeof(float) * slot_dim);
// (ptr + slot_dim * index)[0] = log((ptr + slot_dim * index)[0] + 1);
// (ptr + slot_dim * index)[1] = log((ptr + slot_dim * index)[1] + 1) - (ptr + slot_dim * index)[0];
// fea_idx++;
//} else {
if
(
ids
[
index
]
==
0u
)
{
memcpy
(
ptr
+
slot_dim
*
index
,
init_value
.
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
continue
;
}
memcpy
(
ptr
+
slot_dim
*
index
,
fea_value
[
fea_idx
].
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
fea_idx
++
;
//}
if
(
ids
[
index
]
==
0u
)
{
memcpy
(
ptr
+
slot_dim
*
index
,
init_value
.
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
continue
;
}
memcpy
(
ptr
+
slot_dim
*
index
,
fea_value
[
fea_idx
].
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
fea_idx
++
;
}
}
}
void
AsyncExecutorThreadWorker
::
PushSparse
(
int
table_id
)
{
auto
slot_dim
=
_param_config
->
slot_dim
;
//TODO
auto
fea_dim
=
_param_config
->
fea_dim
;
//_current_train_job.fea_dim();TODO
auto
slot_dim
=
_param_config
->
slot_dim
;
auto
fea_dim
=
_param_config
->
fea_dim
;
auto
&
features
=
_features
[
table_id
];
CHECK
(
features
.
size
()
<
1000000
)
<<
"features size:"
<<
features
.
size
();
//std::vector<std::string> gradient_var;
//auto& gradient_var = GlobalConfig::instance().input_gradient_variable_name; //TODO
CHECK
(
features
.
size
()
<
1000000
)
<<
"features size is too big, may be wrong:"
<<
features
.
size
();
auto
&
push_g
=
_feature_push_value
[
table_id
];
check_pull_push_memory
(
features
,
push_g
,
fea_dim
);
CHECK
(
push_g
.
size
()
==
features
.
size
()
+
1
)
<<
"push_g size:"
<<
push_g
.
size
()
<<
" features size:"
<<
features
.
size
();
uint64_t
fea_idx
=
0u
;
auto
&
fea_info
=
_fea_info
[
table_id
];
int
offset
=
0
;
//if (!_current_train_job.use_cvm_feature()) { //TODO
offset
=
2
;
//}
int
offset
=
2
;
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label
TODO
// slot_idx = 0 is label
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
if
(
_param_config
->
slot_alias_to_table
.
find
(
feed_vec
[
slot_idx
])
==
_param_config
->
slot_alias_to_table
.
end
())
{
LOG
(
ERROR
)
<<
"ERROR slot_idx:"
<<
slot_idx
<<
" name:"
<<
feed_vec
[
slot_idx
];
}
else
if
(
_param_config
->
slot_alias_to_table
[
feed_vec
[
slot_idx
]]
!=
table_id
)
{
LOG
(
ERROR
)
<<
"ERROR continue"
;
continue
;
}
Variable
*
g_var
=
thread_scope_
->
FindVar
(
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]);
...
...
@@ -609,7 +554,6 @@ void AsyncExecutorThreadWorker::PushSparse(int table_id) {
LOG
(
ERROR
)
<<
"var["
<<
feed_vec
[
slot_idx
]
<<
"] not found"
;
exit
(
-
1
);
}
//int len = tensor->lod()[0].back();
int
len
=
tensor
->
numel
();
CHECK
(
slot_dim
*
len
==
g_tensor
->
numel
())
<<
"len:"
<<
len
<<
" g_numel:"
<<
g_tensor
->
numel
();
CHECK
(
len
==
tensor
->
numel
())
<<
"len:"
<<
len
<<
"t_numel:"
<<
tensor
->
numel
();
...
...
paddle/fluid/framework/executor_thread_worker.h
浏览文件 @
3c01cdef
...
...
@@ -155,7 +155,6 @@ class ExecutorThreadWorker {
void
SetFetchVarNames
(
const
std
::
vector
<
std
::
string
>&
fetch_var_names
);
virtual
void
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
);
virtual
void
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
)
{};
virtual
void
BindingSlotVariableMemory
()
{};
virtual
void
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
)
{};
private:
void
CreateThreadScope
(
const
framework
::
ProgramDesc
&
program
);
...
...
@@ -191,7 +190,6 @@ public:
virtual
~
AsyncExecutorThreadWorker
()
{}
void
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
);
void
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
);
void
BindingSlotVariableMemory
();
void
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
);
void
TrainFiles
();
void
TrainOneNetwork
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录