Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c59cdf3a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c59cdf3a
编写于
12月 13, 2018
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine executor_thread_worker.h and executor_thread_worker.cc code style
上级
c4cb4142
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
243 addition
and
213 deletion
+243
-213
paddle/fluid/framework/executor_thread_worker.cc
paddle/fluid/framework/executor_thread_worker.cc
+192
-172
paddle/fluid/framework/executor_thread_worker.h
paddle/fluid/framework/executor_thread_worker.h
+51
-41
未找到文件。
paddle/fluid/framework/executor_thread_worker.cc
浏览文件 @
c59cdf3a
...
...
@@ -58,7 +58,8 @@ bool DensePullThread::check_update_param(uint64_t table_id) {
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
_mutex_for_version
);
auto
&
version
=
_training_versions
[
table_id
];
_current_version
[
table_id
]
=
*
(
std
::
min_element
(
version
.
begin
(),
version
.
end
()));
_current_version
[
table_id
]
=
*
(
std
::
min_element
(
version
.
begin
(),
version
.
end
()));
}
if
(
_current_version
[
table_id
]
-
_last_versions
[
table_id
]
<
_threshold
)
{
return
false
;
...
...
@@ -93,7 +94,8 @@ void DensePullThread::wait_all() {
t
.
wait
();
auto
status
=
t
.
get
();
if
(
status
!=
0
)
{
LOG
(
WARNING
)
<<
"pull dense failed times:"
<<
++
_pull_dense_fail_times
;
LOG
(
WARNING
)
<<
"pull dense failed times:"
<<
++
_pull_dense_fail_times
;
}
}
...
...
@@ -105,7 +107,8 @@ void DensePullThread::wait_all() {
_pull_dense_status
.
resize
(
0
);
}
void
DensePullThread
::
increase_thread_version
(
int
thread_id
,
uint64_t
table_id
)
{
void
DensePullThread
::
increase_thread_version
(
int
thread_id
,
uint64_t
table_id
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
_mutex_for_version
);
_training_versions
[
table_id
][
thread_id
]
++
;
}
...
...
@@ -169,10 +172,6 @@ void ExecutorThreadWorker::SetFetchVarNames(
fetch_var_names
.
end
());
}
void
ExecutorThreadWorker
::
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
)
{
}
void
ExecutorThreadWorker
::
SetDevice
()
{
#if defined _WIN32 || defined __APPLE__
...
...
@@ -332,10 +331,12 @@ void AsyncExecutorThreadWorker::TrainFiles() {
}
// end while ()
}
void
AsyncExecutorThreadWorker
::
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
)
{
void
AsyncExecutorThreadWorker
::
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
)
{
_pslib_ptr
=
pslib_ptr
;
}
void
AsyncExecutorThreadWorker
::
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
)
{
void
AsyncExecutorThreadWorker
::
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
)
{
_pull_dense_thread
=
dpt
;
}
void
AsyncExecutorThreadWorker
::
TrainOneNetwork
()
{
...
...
@@ -347,7 +348,8 @@ void AsyncExecutorThreadWorker::TrainOneNetwork() {
}
bool
need_skip
=
false
;
for
(
auto
t
=
0u
;
t
<
_param_config
->
skip_op
.
size
();
++
t
)
{
if
(
op
->
Type
().
find
(
_param_config
->
skip_op
[
t
])
!=
std
::
string
::
npos
)
{
if
(
op
->
Type
().
find
(
_param_config
->
skip_op
[
t
])
!=
std
::
string
::
npos
)
{
need_skip
=
true
;
break
;
}
...
...
@@ -359,13 +361,13 @@ void AsyncExecutorThreadWorker::TrainOneNetwork() {
UpdateParams
();
}
void
AsyncExecutorThreadWorker
::
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
)
{
void
AsyncExecutorThreadWorker
::
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
)
{
_param_config
=
param_config
;
}
void
AsyncExecutorThreadWorker
::
PrepareParams
()
{
for
(
auto
table_id
:
_param_config
->
sparse_table_id
)
{
for
(
auto
table_id
:
_param_config
->
sparse_table_id
)
{
PullSparse
(
table_id
);
for
(
auto
&
t
:
_pull_sparse_status
)
{
t
.
wait
();
...
...
@@ -378,7 +380,7 @@ void AsyncExecutorThreadWorker::PrepareParams() {
}
_pull_sparse_status
.
resize
(
0
);
for
(
auto
table_id
:
_param_config
->
sparse_table_id
)
{
for
(
auto
table_id
:
_param_config
->
sparse_table_id
)
{
FillSparse
(
table_id
);
}
}
...
...
@@ -440,180 +442,198 @@ void AsyncExecutorThreadWorker::PushDense(int table_id) {
void
AsyncExecutorThreadWorker
::
PullSparse
(
int
table_id
)
{
auto
&
features
=
_features
[
table_id
];
auto
&
feature_value
=
_feature_value
[
table_id
];
auto
fea_dim
=
_param_config
->
fea_dim
;
// slot id starts from 1
features
.
clear
();
features
.
resize
(
0
);
features
.
reserve
(
MAX_FEASIGN_NUM
);
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label TODO
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int
len
=
tensor
->
numel
();
for
(
auto
i
=
0u
;
i
<
len
;
++
i
)
{
//todo: current trick - filter feasign=use_slot_mod(bug: datafeed fill use_slot_mod for empty slot)
if
(
ids
[
i
]
==
0u
)
{
continue
;
}
features
.
push_back
(
static_cast
<
uint64_t
>
(
ids
[
i
]));
}
}
check_pull_push_memory
(
features
,
feature_value
,
fea_dim
);
std
::
vector
<
float
*>
pull_feature_value
;
for
(
auto
i
=
0u
;
i
<
features
.
size
();
++
i
)
{
pull_feature_value
.
push_back
(
feature_value
[
i
].
data
());
}
for
(
int
i
=
0
;
i
<
features
.
size
();
++
i
)
{
auto
&
features
=
_features
[
table_id
];
auto
&
feature_value
=
_feature_value
[
table_id
];
auto
fea_dim
=
_param_config
->
fea_dim
;
// slot id starts from 1
features
.
clear
();
features
.
resize
(
0
);
features
.
reserve
(
MAX_FEASIGN_NUM
);
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label TODO
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int
len
=
tensor
->
numel
();
for
(
auto
i
=
0u
;
i
<
len
;
++
i
)
{
// todo(colourful-tree): current trick - filter feasign=use_slot_mod(
// bug: datafeed fill use_slot_mod for empty slot)
if
(
ids
[
i
]
==
0u
)
{
continue
;
}
features
.
push_back
(
static_cast
<
uint64_t
>
(
ids
[
i
]));
}
auto
status
=
_pslib_ptr
->
_worker_ptr
->
pull_sparse
(
pull_feature_value
.
data
(),
table_id
,
features
.
data
(),
features
.
size
());
_pull_sparse_status
.
push_back
(
std
::
move
(
status
));
auto
&
push_g
=
_feature_push_value
[
table_id
];
check_pull_push_memory
(
features
,
push_g
,
fea_dim
);
collect_feasign_info
(
table_id
);
}
check_pull_push_memory
(
features
,
feature_value
,
fea_dim
);
std
::
vector
<
float
*>
pull_feature_value
;
for
(
auto
i
=
0u
;
i
<
features
.
size
();
++
i
)
{
pull_feature_value
.
push_back
(
feature_value
[
i
].
data
());
}
auto
status
=
_pslib_ptr
->
_worker_ptr
->
pull_sparse
(
pull_feature_value
.
data
(),
table_id
,
features
.
data
(),
features
.
size
());
_pull_sparse_status
.
push_back
(
std
::
move
(
status
));
auto
&
push_g
=
_feature_push_value
[
table_id
];
check_pull_push_memory
(
features
,
push_g
,
fea_dim
);
collect_feasign_info
(
table_id
);
}
void
AsyncExecutorThreadWorker
::
FillSparse
(
int
table_id
)
{
auto
slot_dim
=
_param_config
->
slot_dim
;
auto
fea_dim
=
_param_config
->
fea_dim
;
auto
&
features
=
_features
[
table_id
];
auto
&
fea_value
=
_feature_value
[
table_id
];
CHECK
(
features
.
size
()
>
0
)
<<
"feature size check failed"
;
auto
fea_idx
=
0u
;
std
::
vector
<
float
>
init_value
(
fea_dim
);
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label TODO
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int
len
=
tensor
->
numel
();
Variable
*
var_emb
=
thread_scope_
->
FindVar
(
_param_config
->
slot_input_vec
[
table_id
][
slot_idx
-
1
]);
LoDTensor
*
tensor_emb
=
var_emb
->
GetMutable
<
LoDTensor
>
();
float
*
ptr
=
tensor_emb
->
mutable_data
<
float
>
({
len
,
slot_dim
},
platform
::
CPUPlace
());
memset
(
ptr
,
0
,
sizeof
(
float
)
*
len
*
slot_dim
);
auto
&
tensor_lod
=
tensor
->
lod
()[
0
];
LoD
data_lod
{
tensor_lod
};
tensor_emb
->
set_lod
(
data_lod
);
for
(
auto
index
=
0u
;
index
<
len
;
++
index
){
if
(
ids
[
index
]
==
0u
)
{
memcpy
(
ptr
+
slot_dim
*
index
,
init_value
.
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
continue
;
}
memcpy
(
ptr
+
slot_dim
*
index
,
fea_value
[
fea_idx
].
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
fea_idx
++
;
}
auto
slot_dim
=
_param_config
->
slot_dim
;
auto
fea_dim
=
_param_config
->
fea_dim
;
auto
&
features
=
_features
[
table_id
];
auto
&
fea_value
=
_feature_value
[
table_id
];
CHECK
(
features
.
size
()
>
0
)
<<
"feature size check failed"
;
auto
fea_idx
=
0u
;
std
::
vector
<
float
>
init_value
(
fea_dim
);
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label TODO
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int
len
=
tensor
->
numel
();
Variable
*
var_emb
=
thread_scope_
->
FindVar
(
_param_config
->
slot_input_vec
[
table_id
][
slot_idx
-
1
]);
LoDTensor
*
tensor_emb
=
var_emb
->
GetMutable
<
LoDTensor
>
();
float
*
ptr
=
tensor_emb
->
mutable_data
<
float
>
(
{
len
,
slot_dim
},
platform
::
CPUPlace
());
memset
(
ptr
,
0
,
sizeof
(
float
)
*
len
*
slot_dim
);
auto
&
tensor_lod
=
tensor
->
lod
()[
0
];
LoD
data_lod
{
tensor_lod
};
tensor_emb
->
set_lod
(
data_lod
);
for
(
auto
index
=
0u
;
index
<
len
;
++
index
)
{
if
(
ids
[
index
]
==
0u
)
{
memcpy
(
ptr
+
slot_dim
*
index
,
init_value
.
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
continue
;
}
memcpy
(
ptr
+
slot_dim
*
index
,
fea_value
[
fea_idx
].
data
()
+
2
,
sizeof
(
float
)
*
slot_dim
);
fea_idx
++
;
}
}
}
void
AsyncExecutorThreadWorker
::
PushSparse
(
int
table_id
)
{
auto
slot_dim
=
_param_config
->
slot_dim
;
auto
fea_dim
=
_param_config
->
fea_dim
;
auto
&
features
=
_features
[
table_id
];
CHECK
(
features
.
size
()
<
1000000
)
<<
"features size is too big, may be wrong:"
<<
features
.
size
();
auto
&
push_g
=
_feature_push_value
[
table_id
];
check_pull_push_memory
(
features
,
push_g
,
fea_dim
);
CHECK
(
push_g
.
size
()
==
features
.
size
()
+
1
)
<<
"push_g size:"
<<
push_g
.
size
()
<<
" features size:"
<<
features
.
size
();
uint64_t
fea_idx
=
0u
;
auto
&
fea_info
=
_fea_info
[
table_id
];
int
offset
=
2
;
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
if
(
_param_config
->
slot_alias_to_table
.
find
(
feed_vec
[
slot_idx
])
==
_param_config
->
slot_alias_to_table
.
end
())
{
LOG
(
ERROR
)
<<
"ERROR slot_idx:"
<<
slot_idx
<<
" name:"
<<
feed_vec
[
slot_idx
];
}
else
if
(
_param_config
->
slot_alias_to_table
[
feed_vec
[
slot_idx
]]
!=
table_id
)
{
continue
;
}
Variable
*
g_var
=
thread_scope_
->
FindVar
(
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]);
CHECK
(
g_var
!=
nullptr
)
<<
"var["
<<
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]
<<
"] not found"
;
LoDTensor
*
g_tensor
=
g_var
->
GetMutable
<
LoDTensor
>
();
if
(
g_tensor
==
NULL
)
{
LOG
(
ERROR
)
<<
"var["
<<
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]
<<
"] not found"
;
exit
(
-
1
);
}
float
*
g
=
g_tensor
->
data
<
float
>
();
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
CHECK
(
var
!=
nullptr
)
<<
"var["
<<
feed_vec
[
slot_idx
]
<<
"] not found"
;
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
if
(
tensor
==
NULL
)
{
LOG
(
ERROR
)
<<
"var["
<<
feed_vec
[
slot_idx
]
<<
"] not found"
;
exit
(
-
1
);
}
int
len
=
tensor
->
numel
();
CHECK
(
slot_dim
*
len
==
g_tensor
->
numel
())
<<
"len:"
<<
len
<<
" g_numel:"
<<
g_tensor
->
numel
();
CHECK
(
len
==
tensor
->
numel
())
<<
"len:"
<<
len
<<
"t_numel:"
<<
tensor
->
numel
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
for
(
auto
id_idx
=
0u
;
id_idx
<
len
;
++
id_idx
){
if
(
ids
[
id_idx
]
==
0
)
{
g
+=
slot_dim
;
continue
;
}
memcpy
(
push_g
[
fea_idx
].
data
()
+
offset
,
g
,
sizeof
(
float
)
*
slot_dim
);
push_g
[
fea_idx
][
0
]
=
1.0
f
;
CHECK
(
fea_idx
<
fea_info
.
size
())
<<
"fea_idx:"
<<
fea_idx
<<
" size:"
<<
fea_info
.
size
();
push_g
[
fea_idx
][
1
]
=
static_cast
<
float
>
(
fea_info
[
fea_idx
].
label
);
g
+=
slot_dim
;
fea_idx
++
;
}
auto
slot_dim
=
_param_config
->
slot_dim
;
auto
fea_dim
=
_param_config
->
fea_dim
;
auto
&
features
=
_features
[
table_id
];
auto
&
push_g
=
_feature_push_value
[
table_id
];
check_pull_push_memory
(
features
,
push_g
,
fea_dim
);
CHECK
(
push_g
.
size
()
==
features
.
size
()
+
1
)
<<
"push_g size:"
<<
push_g
.
size
()
<<
" features size:"
<<
features
.
size
();
uint64_t
fea_idx
=
0u
;
auto
&
fea_info
=
_fea_info
[
table_id
];
int
offset
=
2
;
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
// slot_idx = 0 is label
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
if
(
_param_config
->
slot_alias_to_table
.
find
(
feed_vec
[
slot_idx
])
==
_param_config
->
slot_alias_to_table
.
end
())
{
LOG
(
ERROR
)
<<
"ERROR slot_idx:"
<<
slot_idx
<<
" name:"
<<
feed_vec
[
slot_idx
];
}
else
if
(
_param_config
->
slot_alias_to_table
[
feed_vec
[
slot_idx
]]
!=
table_id
)
{
continue
;
}
CHECK
(
fea_idx
==
features
.
size
())
<<
"fea_idx:"
<<
fea_idx
<<
" features size:"
<<
features
.
size
();
CHECK
(
features
.
size
()
>
0
);
std
::
vector
<
float
*>
push_g_vec
;
for
(
auto
i
=
0u
;
i
<
features
.
size
();
++
i
)
{
push_g_vec
.
push_back
(
push_g
[
i
].
data
());
Variable
*
g_var
=
thread_scope_
->
FindVar
(
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]);
CHECK
(
g_var
!=
nullptr
)
<<
"var["
<<
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]
<<
"] not found"
;
LoDTensor
*
g_tensor
=
g_var
->
GetMutable
<
LoDTensor
>
();
if
(
g_tensor
==
NULL
)
{
LOG
(
ERROR
)
<<
"var["
<<
_param_config
->
gradient_var
[
table_id
][
slot_idx
-
1
]
<<
"] not found"
;
exit
(
-
1
);
}
float
*
g
=
g_tensor
->
data
<
float
>
();
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
CHECK
(
var
!=
nullptr
)
<<
"var["
<<
feed_vec
[
slot_idx
]
<<
"] not found"
;
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
if
(
tensor
==
NULL
)
{
LOG
(
ERROR
)
<<
"var["
<<
feed_vec
[
slot_idx
]
<<
"] not found"
;
exit
(
-
1
);
}
int
len
=
tensor
->
numel
();
CHECK
(
slot_dim
*
len
==
g_tensor
->
numel
())
<<
"len:"
<<
len
<<
" g_numel:"
<<
g_tensor
->
numel
();
CHECK
(
len
==
tensor
->
numel
())
<<
"len:"
<<
len
<<
"t_numel:"
<<
tensor
->
numel
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
for
(
auto
id_idx
=
0u
;
id_idx
<
len
;
++
id_idx
)
{
if
(
ids
[
id_idx
]
==
0
)
{
g
+=
slot_dim
;
continue
;
}
memcpy
(
push_g
[
fea_idx
].
data
()
+
offset
,
g
,
sizeof
(
float
)
*
slot_dim
);
push_g
[
fea_idx
][
0
]
=
1.0
f
;
CHECK
(
fea_idx
<
fea_info
.
size
())
<<
"fea_idx:"
<<
fea_idx
<<
" size:"
<<
fea_info
.
size
();
push_g
[
fea_idx
][
1
]
=
static_cast
<
float
>
(
fea_info
[
fea_idx
].
label
);
g
+=
slot_dim
;
fea_idx
++
;
}
auto
status
=
_pslib_ptr
->
_worker_ptr
->
push_sparse
(
table_id
,
features
.
data
(),
(
const
float
**
)
push_g_vec
.
data
(),
features
.
size
());
_push_sparse_status
.
push_back
(
std
::
move
(
status
));
}
CHECK
(
fea_idx
==
features
.
size
())
<<
"fea_idx:"
<<
fea_idx
<<
" features size:"
<<
features
.
size
();
CHECK_GT
(
features
.
size
(),
0
);
std
::
vector
<
float
*>
push_g_vec
;
for
(
auto
i
=
0u
;
i
<
features
.
size
();
++
i
)
{
push_g_vec
.
push_back
(
push_g
[
i
].
data
());
}
auto
status
=
_pslib_ptr
->
_worker_ptr
->
push_sparse
(
table_id
,
features
.
data
(),
(
const
float
**
)
push_g_vec
.
data
(),
features
.
size
());
_push_sparse_status
.
push_back
(
std
::
move
(
status
));
}
void
AsyncExecutorThreadWorker
::
collect_feasign_info
(
int
table_id
)
{
auto
&
fea_info
=
_fea_info
[
table_id
];
auto
&
feature
=
_features
[
table_id
];
fea_info
.
resize
(
feature
.
size
());
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
0
]);
int
table_id
)
{
auto
&
fea_info
=
_fea_info
[
table_id
];
auto
&
feature
=
_features
[
table_id
];
fea_info
.
resize
(
feature
.
size
());
const
std
::
vector
<
std
::
string
>&
feed_vec
=
thread_reader_
->
GetUseSlotAlias
();
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
0
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
label
=
tensor
->
data
<
int64_t
>
();
int
global_index
=
0
;
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
label
=
tensor
->
data
<
int64_t
>
();
int
global_index
=
0
;
for
(
auto
slot_idx
=
1u
;
slot_idx
<
feed_vec
.
size
();
++
slot_idx
)
{
Variable
*
var
=
thread_scope_
->
FindVar
(
feed_vec
[
slot_idx
]);
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int
fea_idx
=
0
;
for
(
auto
ins_idx
=
1u
;
ins_idx
<
tensor
->
lod
()[
0
].
size
();
++
ins_idx
)
{
for
(;
fea_idx
<
tensor
->
lod
()[
0
][
ins_idx
];
++
fea_idx
)
{
if
(
ids
[
fea_idx
]
==
0u
)
{
continue
;
}
FeasignInfo
info
{
slot_idx
,
ins_idx
,
label
[
ins_idx
-
1
]};
fea_info
[
global_index
++
]
=
std
::
move
(
info
);
}
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int
fea_idx
=
0
;
for
(
auto
ins_idx
=
1u
;
ins_idx
<
tensor
->
lod
()[
0
].
size
();
++
ins_idx
)
{
for
(;
fea_idx
<
tensor
->
lod
()[
0
][
ins_idx
];
++
fea_idx
)
{
if
(
ids
[
fea_idx
]
==
0u
)
{
continue
;
}
FeasignInfo
info
{
slot_idx
,
ins_idx
,
label
[
ins_idx
-
1
]};
fea_info
[
global_index
++
]
=
std
::
move
(
info
);
}
}
CHECK
(
global_index
==
feature
.
size
())
<<
"expect fea info size:"
<<
feature
.
size
()
<<
" real:"
<<
global_index
;
}
CHECK
(
global_index
==
feature
.
size
())
<<
"expect fea info size:"
<<
feature
.
size
()
<<
" real:"
<<
global_index
;
}
void
AsyncExecutorThreadWorker
::
check_pull_push_memory
(
...
...
paddle/fluid/framework/executor_thread_worker.h
浏览文件 @
c59cdf3a
...
...
@@ -35,21 +35,22 @@ const static uint32_t MAX_FEASIGN_NUM = 1000 * 100 * 100;
void
CreateTensor
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
struct
AsyncWorkerParamConfig
{
int
slot_dim
;
int
fea_dim
;
int32_t
tmp_push_dense_wait_times
;
int32_t
tmp_push_sparse_wait_times
;
std
::
vector
<
std
::
string
>
skip_op
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
dense_variable_name
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
dense_gradient_variable_name
;
std
::
vector
<
int
>
dense_table_id
;
std
::
vector
<
uint32_t
>
dense_table_size
;
// fea_dim for each dense table
std
::
vector
<
int
>
sparse_table_id
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
slot_input_vec
;
//6048slot 6050slot //name
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
gradient_var
;
//6048slot_embed
std
::
map
<
std
::
string
,
uint64_t
>
slot_alias_to_table
;
//TODO done
int
slot_dim
;
int
fea_dim
;
int32_t
tmp_push_dense_wait_times
;
int32_t
tmp_push_sparse_wait_times
;
std
::
vector
<
std
::
string
>
skip_op
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
dense_variable_name
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
dense_gradient_variable_name
;
std
::
vector
<
int
>
dense_table_id
;
// fea_dim for each dense table
std
::
vector
<
uint32_t
>
dense_table_size
;
std
::
vector
<
int
>
sparse_table_id
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
slot_input_vec
;
std
::
map
<
uint64_t
,
std
::
vector
<
std
::
string
>>
gradient_var
;
std
::
map
<
std
::
string
,
uint64_t
>
slot_alias_to_table
;
};
struct
DensePullThreadParam
{
...
...
@@ -62,8 +63,8 @@ struct DensePullThreadParam {
};
class
DensePullThread
{
public:
DensePullThread
(
DensePullThreadParam
&
param
)
:
public:
explicit
DensePullThread
(
const
DensePullThreadParam
&
param
)
:
_running
(
false
)
{
_ps_client
=
param
.
ps_client
;
_threshold
=
param
.
threshold
;
...
...
@@ -96,11 +97,11 @@ public:
void
pull_dense2
(
uint64_t
table_id
);
void
wait_all
();
private:
private:
void
run
();
bool
check_update_param
(
uint64_t
table_id
);
private:
private:
std
::
shared_ptr
<
paddle
::
ps
::
PSClient
>
_ps_client
;
int
_thread_num
;
int
_threshold
;
...
...
@@ -153,9 +154,13 @@ class ExecutorThreadWorker {
virtual
void
TrainFiles
();
// set fetch variable names from python interface assigned by users
void
SetFetchVarNames
(
const
std
::
vector
<
std
::
string
>&
fetch_var_names
);
virtual
void
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
);
virtual
void
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
)
{};
virtual
void
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
)
{};
virtual
void
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
);
virtual
void
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
)
{}
virtual
void
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
)
{}
private:
void
CreateThreadScope
(
const
framework
::
ProgramDesc
&
program
);
void
CreateThreadOperators
(
const
framework
::
ProgramDesc
&
program
);
...
...
@@ -178,32 +183,37 @@ class ExecutorThreadWorker {
Scope
*
root_scope_
;
// a thread scope, father scope is global score which is shared
Scope
*
thread_scope_
;
//private:
std
::
vector
<
std
::
string
>
fetch_var_names_
;
std
::
vector
<
std
::
vector
<
float
>>
fetch_values_
;
bool
debug_
;
};
class
AsyncExecutorThreadWorker
:
public
ExecutorThreadWorker
{
public:
AsyncExecutorThreadWorker
(){};
virtual
~
AsyncExecutorThreadWorker
()
{}
void
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
);
void
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
);
void
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
);
void
TrainFiles
();
void
TrainOneNetwork
();
void
PrepareParams
();
void
UpdateParams
();
void
PullSparse
(
int
table_id
);
void
FillSparse
(
int
table_id
);
void
PushSparse
(
int
table_id
);
void
PushDense
(
int
table_id
);
void
check_pull_push_memory
(
std
::
vector
<
uint64_t
>&
features
,
std
::
vector
<
float
*>&
push_g
,
int
dim
);
void
check_pull_push_memory
(
std
::
vector
<
uint64_t
>&
features
,
std
::
vector
<
std
::
vector
<
float
>>&
push_g
,
int
dim
);
public:
AsyncExecutorThreadWorker
()
{}
virtual
~
AsyncExecutorThreadWorker
()
{}
void
SetPSlibPtr
(
std
::
shared_ptr
<
paddle
::
distributed
::
PSlib
>
pslib_ptr
);
void
SetPullDenseThread
(
std
::
shared_ptr
<
DensePullThread
>
dpt
);
void
SetParamConfig
(
AsyncWorkerParamConfig
*
param_config
);
void
TrainFiles
();
void
TrainOneNetwork
();
void
PrepareParams
();
void
UpdateParams
();
void
PullSparse
(
int
table_id
);
void
FillSparse
(
int
table_id
);
void
PushSparse
(
int
table_id
);
void
PushDense
(
int
table_id
);
void
check_pull_push_memory
(
const
std
::
vector
<
uint64_t
>&
features
,
std
::
vector
<
float
*>&
push_g
,
int
dim
);
void
check_pull_push_memory
(
const
std
::
vector
<
uint64_t
>&
features
,
std
::
vector
<
std
::
vector
<
float
>>&
push_g
,
int
dim
);
void
collect_feasign_info
(
int
table_id
);
private:
private:
struct
FeasignInfo
{
uint32_t
slot
;
uint32_t
ins
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录