layers.py 69.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import re
20 21 22
import copy
import weakref
import warnings
23
from copy import deepcopy
24 25
import inspect

26
import paddle
C
chenjian 已提交
27
import paddle.profiler as profiler
28
from paddle.profiler.utils import in_profiler_mode
29

C
chengduo 已提交
30
from . import parallel_helper
X
Xin Pan 已提交
31
from .. import unique_name
32
from paddle.fluid import core
33
from .layer_object_helper import LayerObjectHelper
34 35 36 37 38 39 40 41 42 43 44
from .layer_hooks import (
    record_program_ops_pre_hook,
    set_op_customized_attrs_post_hook,
    LayerOpsRecoder,
)
from .base import (
    program_desc_tracing_guard,
    param_guard,
    in_declarative_mode,
    _convert_into_variable,
)
45
from paddle.fluid import framework
46
from ..param_attr import ParamAttr
47
from paddle.fluid.executor import Executor, global_scope
48 49 50 51 52
from paddle.fluid.framework import (
    _non_static_mode,
    convert_np_dtype_to_dtype_,
    in_dygraph_mode,
)
53
from paddle.fluid.framework import Program, program_guard
54
from paddle.fluid.framework import _current_expected_place as _get_device
55
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
56
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
57
import paddle.utils.deprecated as deprecated
58

59
__all__ = ['Layer']
60

61 62 63 64 65 66 67 68
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

69

70 71 72 73 74 75 76 77 78 79 80
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


81
class HookRemoveHelper(object):
82
    """A HookRemoveHelper that can be used to remove hook."""
83 84 85 86 87 88 89 90 91 92 93 94 95 96

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
97
class Layer(object):
98 99
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
100

101
    Parameters:
102 103
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
104 105 106
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
107
        dtype(str, optional): data type of this parameter.
108 109
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
110
                Default: "float32"
111

112 113
    Returns:
        None
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    Examples:
        .. code-block:: python

            import paddle
            class MyLayer(paddle.nn.Layer):
                def __init__(self):
                    super(MyLayer, self).__init__()
                    self._linear = paddle.nn.Linear(1, 1)
                    self._dropout = paddle.nn.Dropout(p=0.5)
                def forward(self, input):
                    temp = self._linear(input)
                    temp = self._dropout(temp)
                    return temp
            x = paddle.randn([10, 1], 'float32')
            mylayer = MyLayer()
            mylayer.eval()  # set mylayer._dropout to eval mode
            out = mylayer(x)
            mylayer.train()  # set mylayer._dropout to train mode
            out = mylayer(x)
X
Xin Pan 已提交
134
    """
X
Xin Pan 已提交
135

136
    def __init__(self, name_scope=None, dtype="float32"):
137
        self.training = True
138
        if name_scope is None:
139 140
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
141
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
142
        self._built = False
M
minqiyang 已提交
143
        self._dtype = dtype
J
Jiabin Yang 已提交
144
        self._init_in_dynamic_mode = framework._non_static_mode()
145

X
Xin Pan 已提交
146
        self._parameters = collections.OrderedDict()
147 148 149
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
150
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
151
        self._loaddict_holder = collections.OrderedDict()
152

153 154 155 156
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

157 158 159
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

160 161 162
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()
163 164
        # Records orignal functions after @to_static to support to rollback
        self._original_funcs = collections.OrderedDict()
165

M
minqiyang 已提交
166
    def train(self):
167 168 169 170 171 172
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

197
        """
198 199 200
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
201
        if _non_static_mode():
202
            framework._dygraph_tracer().train_mode()
203 204 205
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
206
            layer.training = True
M
minqiyang 已提交
207 208

    def eval(self):
209 210 211 212 213 214
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

238
        """
239 240 241
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
242
        if _non_static_mode():
243
            framework._dygraph_tracer().eval_mode()
244 245 246
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
247
            layer.training = False
M
minqiyang 已提交
248

L
LielinJiang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
265

L
LielinJiang 已提交
266 267 268 269 270
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
271
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
272 273 274 275 276 277 278
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
279
        for layer in self.children():
L
LielinJiang 已提交
280 281 282 283 284 285
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
286
    def full_name(self):
287
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
288

289 290
        Returns:
            str: full name of this layer.
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
308 309 310
        """
        return self._full_name

311 312 313 314 315
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
316

317 318 319 320 321 322 323 324 325 326 327
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

328 329 330 331 332 333
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
334

335 336
                    # change the output
                    return output * 2
337

338
                linear = paddle.nn.Linear(13, 5)
339

340 341
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
342

343 344
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
345

346
                out0 = linear(in1)
347

348 349 350 351 352 353 354
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
355 356 357 358 359 360 361
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
362

363
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
364
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
365 366 367 368 369 370 371 372 373 374 375 376 377 378
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

379 380
                import paddle
                import numpy as np
381

382
                # the forward_pre_hook change the input of the layer: input = input * 2
383 384
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
385

386 387 388
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
389

390
                linear = paddle.nn.Linear(13, 5)
391

392 393
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
394

395 396 397
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
398

399 400
                # remove the hook
                forward_pre_hook_handle.remove()
401

402 403 404
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
405

406 407
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
408 409 410 411 412
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

413 414 415 416 417 418 419 420
    def create_parameter(
        self,
        shape,
        attr=None,
        dtype=None,
        is_bias=False,
        default_initializer=None,
    ):
421
        """Create parameters for this layer.
422

423
        Parameters:
424
            shape(list): Shape of the parameter.
425 426
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
427
                If set str, it can be "bool",  "float16", "float32", "float64",
428 429
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
430
            default_initializer(Initializer, optional): the default initializer for this parameter.
431
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
432
                for non-bias and bias parameter, respectively. Default: None.
433

434
        Returns:
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

456
        """
H
hong 已提交
457
        temp_attr = copy.deepcopy(attr)
458
        if isinstance(temp_attr, str) and temp_attr == "":
H
hong 已提交
459
            temp_attr = None
460 461 462 463 464 465 466 467 468
        return self._helper.create_parameter(
            temp_attr, shape, dtype, is_bias, default_initializer
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.",
    )
469
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
470 471 472
        """

        Create Tensor for this layer.
473

474
        Parameters:
W
wanghuancoder 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
495

W
wanghuancoder 已提交
496
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
497

W
wanghuancoder 已提交
498 499 500
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
501

W
wanghuancoder 已提交
502 503 504 505 506 507
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
508 509 510
            var_name = unique_name.generate(
                ".".join([self._full_name, "_generated_var"])
            )
W
wanghuancoder 已提交
511 512 513 514 515

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
516 517
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
W
wanghuancoder 已提交
518 519 520 521 522 523 524 525 526 527

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
528
            dtype(str, optional): data type of this parameter.
529 530
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
531
                If set None, it will be "float32". Default: None
532

533
        Returns:
W
wanghuancoder 已提交
534
            Tensor, created Tensor.
535 536 537 538 539 540 541 542 543 544 545 546

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
547

W
wanghuancoder 已提交
548
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
549

550 551 552
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
553

554 555
                        return out

556 557 558 559
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
560 561 562
            var_name = unique_name.generate(
                ".".join([self._full_name, "_generated_var"])
            )
563 564

        return self._helper.main_program.current_block().create_var(
565 566 567
            name=var_name,
            persistable=persistable,
            dtype=dtype,
568 569
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
570

X
polish  
Xin Pan 已提交
571
    def parameters(self, include_sublayers=True):
572
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
573

574
        Returns:
575 576 577 578 579 580 581 582 583 584
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
585
        """
586
        ret = [
587 588 589 590
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers
            )
591
        ]
X
polish  
Xin Pan 已提交
592
        return ret
X
Xin Pan 已提交
593

594 595 596 597 598 599 600 601 602
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

603
                import paddle
604

605 606 607 608 609
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
610

611
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

627
                import paddle
628

629 630 631 632 633 634 635
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
636 637 638 639 640 641 642 643

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
644
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
645 646
        """Returns a list of sub layers.

647
        Parameters:
J
Jiabin Yang 已提交
648
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
649

650 651
        Returns:
            list of Layer : a list of sub layers.
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
672
        """
673 674
        ret = [
            layer
J
Jiabin Yang 已提交
675
            for _, layer in self.named_sublayers(include_self=include_self)
676
        ]
X
Xin Pan 已提交
677 678
        return ret

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

694
                import paddle
695

696 697 698 699 700
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
701 702 703

        """
        params_set = set()
704 705 706 707 708
        named_sublayers = (
            self.named_sublayers(prefix=prefix, include_self=True)
            if include_sublayers
            else zip([prefix], [self])
        )
709 710 711 712 713 714 715 716 717
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
718
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
719 720 721 722 723 724 725
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
726
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
727 728 729 730 731 732 733

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

734
                import paddle
735

736 737 738 739 740
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
741 742 743 744 745 746 747

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
748 749 750 751
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
752 753 754
            for p, l in layer.named_sublayers(
                prefix=layer_prefix, include_self=True, layers_set=layers_set
            ):
J
Jiabin Yang 已提交
755
                yield p, l
756

757
    def register_buffer(self, name, tensor, persistable=True):
758
        """
759
        Registers a tensor as buffer into the layer.
760

761
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
762 763 764 765 766 767 768 769 770 771
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
772
            tensor (Tensor): the tensor to be registered as buffer.
773 774 775 776 777
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
778

779 780 781 782
        Examples:
            .. code-block:: python

                import numpy as np
783
                import paddle
784

785 786 787 788 789 790 791
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
792 793 794 795 796

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
797 798
                "super(YourLayer, self).__init__() should be called first"
            )
799
        elif not isinstance(name, str):
800
            raise TypeError(
801 802 803 804
                "The name of buffer should be a string, but received {}.".format(
                    type(name).__name__
                )
            )
805
        elif '.' in name:
806 807 808
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
809 810
                "form of `self.**.**`, it will cause AttributeError."
            )
811 812 813 814
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
815 816 817
        elif tensor is not None and not (
            type(tensor) == core.VarBase or type(tensor) == core.eager.Tensor
        ):
818
            raise TypeError(
819 820 821 822
                "The registered buffer should be a Paddle.Tensor, but received {}.".format(
                    type(tensor).__name__
                )
            )
823
        else:
824
            self._buffers[name] = tensor
825 826 827 828 829 830 831 832 833 834 835 836 837
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

853 854
        """
        ret = [
855 856 857 858
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers
            )
859 860 861 862 863
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
864
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
865 866 867 868 869 870 871

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
872
            (string, Tensor): Tuple of name and tensor
873 874 875 876 877

        Examples:
            .. code-block:: python

                import numpy as np
878
                import paddle
879

880 881 882 883
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
884

885 886 887 888 889
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
890

891
                model = paddle.nn.Sequential(fc1, fc2)
892

893 894 895
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
896 897 898

        """
        buffers_set = set()
899 900 901 902 903
        named_sublayers = (
            self.named_sublayers(prefix=prefix, include_self=True)
            if include_sublayers
            else zip([prefix], [self])
        )
904 905 906 907 908 909 910 911 912
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
913
    def clear_gradients(self):
914 915
        """
        Clear the gradients of all parameters for this layer.
916

917 918
        Returns:
            None
919

920 921 922
        Examples:
            .. code-block:: python

923
                import paddle
924 925
                import numpy as np

926 927 928 929 930 931 932 933 934
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
935 936

        """
X
Xin Pan 已提交
937
        for p in self.parameters():
938 939
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
940

941
    def _build_once(self, *args, **kwargs):
942 943
        pass

944 945 946 947 948
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
949
                    hook_result = (hook_result,)
950 951 952 953 954 955 956 957 958
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
959 960 961 962
                if (
                    parallel_helper._is_data_parallel_mode()
                    and paddle.is_compiled_with_xpu()
                ):
963
                    parallel_helper._broadcast_parameters(
964 965
                        self._parameters.values()
                    )
966 967 968

            self._built = True

969
        if in_profiler_mode():
970 971 972
            with profiler.RecordEvent(
                self.__class__.__name__, profiler.TracerEventType.Forward
            ):
973 974
                outputs = self.forward(*inputs, **kwargs)
        else:
C
chenjian 已提交
975
            outputs = self.forward(*inputs, **kwargs)
976 977 978 979 980 981 982 983

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

984
    def __call__(self, *inputs, **kwargs):
985 986 987 988 989 990 991 992
        if (
            (not in_declarative_mode())
            and (not self._forward_pre_hooks)
            and (not self._forward_post_hooks)
            and (not self._built)
            and in_dygraph_mode()
            and (not in_profiler_mode())
        ):
993 994 995 996
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
997

998
    def forward(self, *inputs, **kwargs):
999 1000 1001 1002 1003 1004 1005 1006
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
1007
        raise NotImplementedError
X
Xin Pan 已提交
1008 1009 1010 1011

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
1012 1013 1014
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

1015
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
1016

1017 1018 1019
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
1020
        Returns:
1021
            Layer: the sublayer passed in.
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
1048
        """
1049
        assert isinstance(sublayer, Layer) or sublayer is None
1050

X
Xin Pan 已提交
1051 1052 1053 1054 1055 1056
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

1057
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
1058

1059 1060 1061
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
1062
        Returns:
1063
            Parameter: the parameter passed in.
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1083
        """
1084 1085
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
1086 1087
                "super(YourLayer, self).__init__() should be called firstly."
            )
1088
        elif not isinstance(name, str):
1089
            raise TypeError(
1090 1091 1092 1093
                "The name of parameter should be a string, but received {}.".format(
                    type(name).__name__
                )
            )
1094 1095 1096 1097
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
1098 1099
                "form of `self.**.**`, it will cause AttributeError."
            )
1100 1101 1102 1103
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
1104 1105 1106
        elif parameter is not None and not isinstance(
            parameter, framework.Parameter
        ):
1107
            raise TypeError(
1108 1109 1110 1111
                "The parameter to be added should be a Parameter, but received {}.".format(
                    type(parameter).__name__
                )
            )
1112 1113 1114
        else:
            if parameter is None:
                self._parameters[name] = None
1115

1116
            if len(self._loaddict_holder) > 0:
1117 1118 1119 1120 1121
                assert (
                    parameter.name in self._loaddict_holder
                ), "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name
                )
H
hong 已提交
1122

1123
                parameter.set_value(self._loaddict_holder[parameter.name])
1124

1125
            self._parameters[name] = parameter
X
Xin Pan 已提交
1126 1127
        return parameter

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            layers_hooks = (
                self._forward_pre_hooks
                if is_pre_hook
                else self._forward_post_hooks
            )
            candidate_hook = (
                record_program_ops_pre_hook
                if is_pre_hook
                else set_op_customized_attrs_post_hook
            )
1150 1151 1152 1153

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
1154
                already_registed = layers_hooks[last_key] == candidate_hook
1155 1156 1157 1158

            return already_registed

        if not isinstance(attrs, dict):
1159 1160
            raise TypeError(
                "attrs should be type(dict), but received {}".format(
1161 1162 1163
                    type(attrs).__name__
                )
            )
1164 1165 1166 1167 1168 1169

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
1170 1171
                record_program_ops_pre_hook
            )
1172 1173 1174 1175 1176 1177
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
1178 1179
                set_op_customized_attrs_post_hook
            )
1180
            if len(self._forward_post_hooks) > 1:
1181 1182 1183
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False
                )
1184 1185 1186 1187 1188 1189

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1190 1191 1192 1193 1194 1195
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1196
    def __getattr__(self, name):
1197 1198 1199
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1200
                if in_declarative_mode():
1201
                    return _convert_into_variable(self._parameters[name])
1202 1203 1204 1205 1206 1207 1208 1209
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1210
                if in_declarative_mode():
1211
                    return _convert_into_variable(_buffers[name])
1212 1213
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1214 1215

    def __setattr__(self, name, value):
S
songyouwei 已提交
1216 1217 1218 1219 1220
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1221 1222
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1223
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1224 1225 1226
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
1227 1228
                    "super(YourLayer, self).__init__() should be called first"
                )
H
hong 已提交
1229
            if len(self._loaddict_holder) > 0:
1230 1231 1232 1233 1234
                assert (
                    value.name in self._loaddict_holder
                ), "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    value.name
                )
H
hong 已提交
1235 1236 1237

                value.set_value(self._loaddict_holder[value.name])

1238
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1239
            params[name] = value
1240 1241 1242
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
1243 1244 1245 1246
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'".format(
                        name, type(value).__name__
                    )
                )
1247
            params[name] = None
X
Xin Pan 已提交
1248
        else:
1249
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1250
            if isinstance(value, Layer):
1251 1252 1253 1254 1255
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1256
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1257 1258 1259 1260
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
1261 1262 1263 1264
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'".format(
                            name, type(value).__name__
                        )
                    )
1265 1266
                layers[name] = None
            else:
1267
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1268
                if isinstance(value, (core.VarBase, core.eager.Tensor)):
1269 1270 1271 1272
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
1273 1274 1275
                    _remove_if_exist(
                        self.__dict__, self._parameters, self._sub_layers
                    )
1276 1277 1278 1279
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1280 1281
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1282 1283
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1284
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1285 1286 1287 1288
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1289

1290 1291 1292 1293
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1294 1295 1296
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
1297 1298 1299 1300 1301 1302 1303 1304
                                'not allowed to be set to Variable when self.{0} is None.'.format(
                                    name
                                )
                            )
                        elif (
                            _buffers[name] is None
                            or type(getattr(self, name)) == core.VarBase
                        ):
1305 1306
                            _buffers[name] = assign(value)
                        else:
1307
                            assign(value, getattr(self, name))
1308
                    elif value is not None:
1309
                        raise TypeError(
1310 1311 1312 1313
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'".format(
                                name, type(value).__name__
                            )
                        )
1314 1315 1316 1317
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1318 1319
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1320 1321 1322 1323 1324 1325

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1326 1327 1328
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1329 1330 1331
        else:
            object.__delattr__(self, name)

1332 1333
    def __dir__(self):
        """
W
wanghuancoder 已提交
1334
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1335 1336

        Examples:
1337 1338 1339
            .. code-block:: python
                import paddle
                import numpy as np
1340

1341 1342 1343 1344 1345
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1346
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1347 1348
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1349

1350 1351 1352 1353
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1395 1396 1397 1398 1399
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1400 1401 1402 1403 1404 1405
    def _obtain_parameters_buffers(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
    ):
S
ShenLiang 已提交
1406
        """
1407
        The difference from state_dict() is that state_dict_hook will not be called,
S
ShenLiang 已提交
1408 1409 1410 1411 1412 1413 1414 1415
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
1416 1417 1418 1419
            if (
                buffer is not None
                and name not in self._non_persistable_buffer_names_set
            ):
S
ShenLiang 已提交
1420 1421 1422 1423 1424 1425 1426 1427
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
1428 1429 1430 1431 1432
                            destination_temp,
                            include_sublayers,
                            structured_name_prefix + layer_name + ".",
                        )
                    )
S
ShenLiang 已提交
1433 1434 1435
                    destination = destination_temp
        return destination

1436 1437 1438 1439 1440 1441 1442 1443
    def _state_dict_impl(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        include_non_persistable_buffer=False,
        use_hook=True,
    ):
1444 1445 1446 1447 1448 1449 1450
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
1451
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1452 1453 1454 1455 1456 1457 1458 1459 1460
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
1461 1462 1463 1464
                if (
                    buffer is not None
                    and name not in self._non_persistable_buffer_names_set
                ):
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
1476 1477
                            destination_temp,
                            include_sublayers,
1478
                            structured_name_prefix + layer_name + ".",
1479 1480 1481 1482
                            include_non_persistable_buffer,
                            use_hook,
                        )
                    )
1483
                    destination = destination_temp
1484 1485 1486 1487 1488
        if use_hook:
            for state_dict_hook in self._state_dict_hooks.values():
                hook_result = state_dict_hook(destination)
                if hook_result is not None:
                    destination = hook_result
1489 1490 1491

        return destination

1492 1493 1494 1495 1496 1497 1498
    def to_static_state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        use_hook=True,
    ):
1499 1500 1501 1502 1503 1504
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1505
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1525
            include_non_persistable_buffer=True,
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
            use_hook=use_hook,
        )

    def state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        use_hook=True,
    ):
H
hong 已提交
1536
        '''
1537
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1538

1539
        Parameters:
1540 1541
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1542
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1543

H
hong 已提交
1544
        Retruns:
1545
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1546 1547

        Examples:
1548 1549
            .. code-block:: python

1550
                import paddle
H
hong 已提交
1551

1552 1553 1554 1555
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1556 1557

        '''
1558 1559 1560 1561
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1562
            include_non_persistable_buffer=False,
1563 1564
            use_hook=use_hook,
        )
1565

1566
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1567
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1568
        '''
1569
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1570

1571
        Parameters:
1572
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1573
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1574
                                                  Default: True
H
hong 已提交
1575 1576 1577 1578
        Returns:
            None

        Examples:
1579 1580
            .. code-block:: python

1581
                import paddle
1582

1583
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1584

1585
                state_dict = emb.state_dict()
1586 1587
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1588
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1589

H
hong 已提交
1590 1591
        '''

1592 1593 1594
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
1595
                raise ValueError(
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
                    "{} is not found in the provided dict.".format(key)
                )
            if isinstance(state, dict) or isinstance(state, list):
                if len(state) != len(param):
                    raise ValueError(
                        "{} receieves the length of {}, "
                        "but the expected shape is {}".format(
                            key, len(state), len(param)
                        )
                    )
S
Steffy-zxf 已提交
1606 1607 1608
                else:
                    return param, state
            else:
1609 1610 1611 1612 1613
                state_shape = (
                    state.shape()
                    if inspect.ismethod(state.shape)
                    else state.shape
                )
S
Steffy-zxf 已提交
1614 1615 1616

                if list(state_shape) != list(param.shape):
                    raise ValueError(
1617 1618 1619 1620
                        "{} receives a shape {}, but the expected shape is {}.".format(
                            key, list(state_shape), list(param.shape)
                        )
                    )
S
Steffy-zxf 已提交
1621
                return param, state
1622 1623

        matched_param_state = []
1624
        for key, param in self.state_dict(use_hook=False).items():
1625 1626 1627 1628 1629 1630 1631
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

J
Jiabin Yang 已提交
1632
        if _non_static_mode():
1633 1634 1635
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1636

1637 1638 1639 1640 1641 1642 1643
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1644 1645 1646 1647
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1648 1649 1650 1651 1652 1653
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

1654 1655 1656 1657 1658
            try:
                executor = Executor(_get_device())._default_executor
                # restore parameter states
                core._create_loaded_parameter(
                    [param for param, state in matched_param_state],
1659 1660 1661
                    global_scope(),
                    executor,
                )
1662 1663 1664 1665 1666 1667
                for param, state in matched_param_state:
                    _set_var(param, state)
            except ValueError as e:
                raise ValueError(
                    "This error might happens in dy2static, while calling 'set_state_dict' dynamicly in 'forward', which is not supported. If you only need call 'set_state_dict' once, move it to '__init__'."
                )
1668

C
chentianyu03 已提交
1669 1670 1671 1672 1673
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1674 1675 1676 1677
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1678
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1679

1680
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1681
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1682

C
chentianyu03 已提交
1683
        Returns:
1684
            self
C
chentianyu03 已提交
1685 1686 1687 1688

        Examples:
            .. code-block:: python

1689
                # required: skip
C
chentianyu03 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1715

1716
        '''
1717 1718 1719 1720 1721 1722 1723
        return self._to_impl(
            device=device,
            dtype=dtype,
            blocking=blocking,
            include_sublayers=True,
            floating_only=False,
        )
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
1737 1738 1739
                        grad_applied = func(
                            param._grad_ivar(), device, dtype, blocking
                        )
1740 1741

        for key, buf in self._buffers.items():
1742 1743
            if buf is not None:
                self._buffers[key] = func(buf, device, dtype, blocking)
1744

1745 1746
        self._dtype = dtype

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    def _transform(self, t, device, dtype, blocking):
        if device is None:
            device = t.place
        if dtype is None:
            dtype = t.dtype

        if type(dtype) is not VarDesc.VarType:
            dtype = convert_np_dtype_to_dtype_(dtype)

        # 1. gpu place need to determine whether the memory is sufficient for allocation:
        if t.place.is_gpu_place():
            # for gpu, minimum memory allocation unit is 256 bytes.
            size_dtype = core.size_of_dtype(dtype)
            # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
            # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
            waiting_alloc_memory = (
1763 1764
                ((np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
            )
1765 1766 1767
            gpu_memory_available = core.gpu_memory_available()
            if gpu_memory_available < waiting_alloc_memory:
                # Copy param / Tensor to cpu
1768 1769 1770
                t_used = t._copy_to(
                    paddle.CPUPlace(), blocking
                )  # k-v type will error
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
                # Release mem of t
                t.value().get_tensor()._clear()
            else:
                t_used = t
        else:
            t_used = t

        # 2. cast param / Tensor to dtype
        if dtype is not None and dtype != t_used.dtype:
            with paddle.fluid.framework._dygraph_place_guard(
1781 1782
                place=t_used.place
            ):
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
                t_casted = t_used.cast(dtype=dtype)
        else:
            t_casted = t_used

        # 3. Copy casted cpu param / Tensor to device
        if device is not None and not t_casted.place._equals(device):
            new_t = t_casted._copy_to(device, blocking)
        else:
            new_t = t_casted

        # 4. share Tensor to origin param / Tensor
        dst_tensor = t.value().get_tensor()
        src_tensor = new_t.value().get_tensor()
        dst_tensor._share_data_with(src_tensor)

        return t

1800 1801 1802 1803 1804 1805 1806 1807
    def _to_impl(
        self,
        device=None,
        dtype=None,
        blocking=None,
        include_sublayers=True,
        floating_only=False,
    ):
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1820

1821 1822
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

1823 1824
            floating_only(bool|False, optional): If True, only cast all floating point parameters and buffers of Layer by the give device, dtype and blocking.

1825 1826
        Returns:
            self
C
chentianyu03 已提交
1827 1828 1829 1830

        '''

        if device is None and dtype is None and blocking is None:
1831
            return self
C
chentianyu03 已提交
1832 1833 1834 1835

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
1836 1837 1838 1839 1840 1841 1842 1843 1844
            elif isinstance(
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                ),
            ):
C
chentianyu03 已提交
1845 1846 1847 1848
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
1849 1850
                    + type(device).__name__
                )
C
chentianyu03 已提交
1851 1852 1853 1854 1855

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
1856 1857
                blocking, bool
            ), "blocking value error, must be the True, False or None"
C
chentianyu03 已提交
1858 1859

        def transform(t, device, dtype, blocking):
1860 1861 1862
            if floating_only and (not paddle.is_floating_point(t)):
                return t
            return self._transform(t, device, dtype, blocking)
C
chentianyu03 已提交
1863

1864 1865
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1866
            self._apply(transform, device, dtype, blocking, include_sublayers)
1867

1868
        self._dtype = dtype
1869
        return self
C
chentianyu03 已提交
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
    def _startup_program(self):
        """
        Return starup program containing initialization operations of all parameters.

        NOTE(dev): This is a very low level API and only for inner developer.
        """
        startup_program = Program()
        for param in self.parameters():
            param._create_init_op(startup_program.global_block())

        return startup_program

1883 1884 1885
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict