“b3beda8063ae3ef183183d2c26063a31ee35af52”上不存在“uni_modules/uts-file-manager/package.json”
test_yolov3_loss_op.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

D
dengkaipeng 已提交
25

26 27
def l1loss(x, y):
    return abs(x - y)
D
dengkaipeng 已提交
28 29


30
def sce(x, label):
31 32 33
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
34
    return -term1 - term2
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


69
def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
70 71 72 73 74 75 76 77
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
78 79 80
    downsample_ratio = attrs['downsample_ratio']
    use_label_smooth = attrs['use_label_smooth']
    input_size = downsample_ratio * h
81
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
82
    loss = np.zeros((n)).astype('float64')
83

X
xiaoting 已提交
84 85 86
    smooth_weight = min(1.0 / class_num, 1.0 / 40)
    label_pos = 1.0 - smooth_weight if use_label_smooth else 1.0
    label_neg = smooth_weight if use_label_smooth else 0.0
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
106
    objness = np.zeros(pred_box.shape[:2]).astype('float64')
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
124
    gt_matches = iou_matches.copy()
125 126 127
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
128
                gt_matches[i, j] = -1
129 130
                continue
            if iou_matches[i, j] not in anchor_mask:
131
                gt_matches[i, j] = -1
132 133
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
134
            gt_matches[i, j] = an_idx
135 136 137 138 139 140 141
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
142
            scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3]) * gtscore[i, j]
143 144
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
145 146
            loss[i] += l1loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 3], th) * scale
147

148
            objness[i, an_idx * h * w + gj * w + gi] = gtscore[i, j]
149 150

            for label_idx in range(class_num):
151 152 153
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx], label_pos
                               if label_idx == gtlabel[i, j] else
                               label_neg) * gtscore[i, j]
154 155

        for j in range(mask_num * h * w):
D
dengkaipeng 已提交
156
            if objness[i, j] > 0:
157
                loss[i] += sce(pred_obj[i, j], 1.0) * objness[i, j]
D
dengkaipeng 已提交
158 159
            elif objness[i, j] == 0:
                loss[i] += sce(pred_obj[i, j], 0.0)
160

161
    return (loss, objness.reshape((n, mask_num, h, w)).astype('float64'), \
162
            gt_matches.astype('int32'))
163 164


165 166 167 168
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
169 170
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float64'))
        gtbox = np.random.random(size=self.gtbox_shape).astype('float64')
D
dengkaipeng 已提交
171 172 173 174
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask
175 176 177

        self.attrs = {
            "anchors": self.anchors,
178
            "anchor_mask": self.anchor_mask,
179 180
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
181 182
            "downsample_ratio": self.downsample_ratio,
            "use_label_smooth": self.use_label_smooth,
183 184
        }

D
dengkaipeng 已提交
185 186
        self.inputs = {
            'X': x,
187
            'GTBox': gtbox.astype('float64'),
D
dengkaipeng 已提交
188
            'GTLabel': gtlabel.astype('int32'),
D
dengkaipeng 已提交
189
        }
190

191
        gtscore = np.ones(self.gtbox_shape[:2]).astype('float64')
192
        if self.gtscore:
193
            gtscore = np.random.random(self.gtbox_shape[:2]).astype('float64')
194 195
            self.inputs['GTScore'] = gtscore

196 197
        loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, gtscore,
                                               self.attrs)
198 199 200 201 202
        self.outputs = {
            'Loss': loss,
            'ObjectnessMask': objness,
            "GTMatchMask": gt_matches
        }
203 204

    def test_check_output(self):
205
        place = core.CPUPlace()
206
        self.check_output_with_place(place, atol=2e-3)
207

D
dengkaipeng 已提交
208 209
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
210
        self.check_grad_with_place(place, ['X'], 'Loss', max_relative_error=0.2)
211 212

    def initTestCase(self):
213 214 215 216 217
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
        self.anchor_mask = [0, 1, 2]
D
dengkaipeng 已提交
218
        self.class_num = 5
219
        self.ignore_thresh = 0.7
220
        self.downsample_ratio = 32
221
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
D
dengkaipeng 已提交
222
        self.gtbox_shape = (3, 5, 4)
223
        self.gtscore = True
224 225 226 227
        self.use_label_smooth = True


class TestYolov3LossWithoutLabelSmooth(TestYolov3LossOp):
228 229 230 231 232 233 234 235 236 237 238 239
    def initTestCase(self):
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
        self.anchor_mask = [0, 1, 2]
        self.class_num = 5
        self.ignore_thresh = 0.7
        self.downsample_ratio = 32
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
        self.gtbox_shape = (3, 5, 4)
        self.gtscore = True
240
        self.use_label_smooth = False
241 242


243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
class TestYolov3LossNoGTScore(TestYolov3LossOp):
    def initTestCase(self):
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
        self.anchor_mask = [0, 1, 2]
        self.class_num = 5
        self.ignore_thresh = 0.7
        self.downsample_ratio = 32
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
        self.gtbox_shape = (3, 5, 4)
        self.gtscore = False
        self.use_label_smooth = True


259 260
if __name__ == "__main__":
    unittest.main()