test_yolov3_loss_op.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# def l1loss(x, y, weight):
#     n = x.shape[0]
#     x = x.reshape((n, -1))
#     y = y.reshape((n, -1))
#     weight = weight.reshape((n, -1))
#     return (np.abs(y - x) * weight).sum(axis=1)
#
#
# def mse(x, y, weight):
#     n = x.shape[0]
#     x = x.reshape((n, -1))
#     y = y.reshape((n, -1))
#     weight = weight.reshape((n, -1))
#     return ((y - x)**2 * weight).sum(axis=1)
#
#
# def sce(x, label, weight):
#     n = x.shape[0]
#     x = x.reshape((n, -1))
#     label = label.reshape((n, -1))
#     weight = weight.reshape((n, -1))
#     sigmoid_x = expit(x)
#     term1 = label * np.log(sigmoid_x)
#     term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
#     return ((-term1 - term2) * weight).sum(axis=1)
D
dengkaipeng 已提交
50 51


52 53
def l1loss(x, y):
    return abs(x - y)
54 55


56
def sce(x, label):
57 58 59
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
60
    return -term1 - term2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85


def box_iou(box1, box2):
    b1_x1 = box1[0] - box1[2] / 2
    b1_x2 = box1[0] + box1[2] / 2
    b1_y1 = box1[1] - box1[3] / 2
    b1_y2 = box1[1] + box1[3] / 2
    b2_x1 = box2[0] - box2[2] / 2
    b2_x2 = box2[0] + box2[2] / 2
    b2_y1 = box2[1] - box2[3] / 2
    b2_y2 = box2[1] + box2[3] / 2

    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    inter_rect_x1 = max(b1_x1, b2_x1)
    inter_rect_y1 = max(b1_y1, b2_y1)
    inter_rect_x2 = min(b1_x2, b2_x2)
    inter_rect_y2 = min(b1_y2, b2_y2)
    inter_area = max(inter_rect_x2 - inter_rect_x1, 0) * max(
        inter_rect_y2 - inter_rect_y1, 0)

    return inter_area / (b1_area + b2_area + inter_area)


86 87
def build_target(gtboxes, gtlabel, attrs, grid_size):
    n, b, _ = gtboxes.shape
88 89 90
    ignore_thresh = attrs["ignore_thresh"]
    anchors = attrs["anchors"]
    class_num = attrs["class_num"]
91
    input_size = attrs["input_size"]
92
    an_num = len(anchors) // 2
93
    conf_mask = np.ones((n, an_num, grid_size, grid_size)).astype('float32')
94 95 96 97 98
    obj_mask = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    tx = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    ty = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    tw = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    th = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
99
    tweight = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
100 101 102 103 104 105
    tconf = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    tcls = np.zeros(
        (n, an_num, grid_size, grid_size, class_num)).astype('float32')

    for i in range(n):
        for j in range(b):
106
            if gtboxes[i, j, :].sum() == 0:
107 108
                continue

D
dengkaipeng 已提交
109
            gt_label = gtlabel[i, j]
110 111 112 113
            gx = gtboxes[i, j, 0] * grid_size
            gy = gtboxes[i, j, 1] * grid_size
            gw = gtboxes[i, j, 2] * input_size
            gh = gtboxes[i, j, 3] * input_size
114 115 116 117 118 119 120 121 122 123 124 125 126

            gi = int(gx)
            gj = int(gy)

            gtbox = [0, 0, gw, gh]
            max_iou = 0
            for k in range(an_num):
                anchor_box = [0, 0, anchors[2 * k], anchors[2 * k + 1]]
                iou = box_iou(gtbox, anchor_box)
                if iou > max_iou:
                    max_iou = iou
                    best_an_index = k
                if iou > ignore_thresh:
127
                    conf_mask[i, best_an_index, gj, gi] = 0
128

129
            conf_mask[i, best_an_index, gj, gi] = 1
130 131 132 133 134 135 136
            obj_mask[i, best_an_index, gj, gi] = 1
            tx[i, best_an_index, gj, gi] = gx - gi
            ty[i, best_an_index, gj, gi] = gy - gj
            tw[i, best_an_index, gj, gi] = np.log(gw / anchors[2 *
                                                               best_an_index])
            th[i, best_an_index, gj, gi] = np.log(
                gh / anchors[2 * best_an_index + 1])
137 138
            tweight[i, best_an_index, gj, gi] = 2.0 - gtboxes[
                i, j, 2] * gtboxes[i, j, 3]
139 140 141
            tconf[i, best_an_index, gj, gi] = 1
            tcls[i, best_an_index, gj, gi, gt_label] = 1

142
    return (tx, ty, tw, th, tweight, tconf, tcls, conf_mask, obj_mask)
143 144


D
dengkaipeng 已提交
145
def YoloV3Loss(x, gtbox, gtlabel, attrs):
146
    n, c, h, w = x.shape
147
    an_num = len(attrs['anchors']) // 2
148 149
    class_num = attrs["class_num"]
    x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
150 151
    pred_x = x[:, :, :, :, 0]
    pred_y = x[:, :, :, :, 1]
152 153
    pred_w = x[:, :, :, :, 2]
    pred_h = x[:, :, :, :, 3]
154 155
    pred_conf = x[:, :, :, :, 4]
    pred_cls = x[:, :, :, :, 5:]
156

157
    tx, ty, tw, th, tweight, tconf, tcls, conf_mask, obj_mask = build_target(
D
dengkaipeng 已提交
158
        gtbox, gtlabel, attrs, x.shape[2])
159

160
    obj_weight = obj_mask * tweight
161 162
    obj_mask_expand = np.tile(
        np.expand_dims(obj_mask, 4), (1, 1, 1, 1, int(attrs['class_num'])))
163 164
    loss_x = sce(pred_x, tx, obj_weight)
    loss_y = sce(pred_y, ty, obj_weight)
D
dengkaipeng 已提交
165 166
    loss_w = l1loss(pred_w, tw, obj_weight)
    loss_h = l1loss(pred_h, th, obj_weight)
167
    loss_obj = sce(pred_conf, tconf, conf_mask)
168 169
    loss_class = sce(pred_cls, tcls, obj_mask_expand)

170
    return loss_x + loss_y + loss_w + loss_h + loss_obj + loss_class
171 172


173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


def YOLOv3Loss(x, gtbox, gtlabel, attrs):
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
    downsample = attrs['downsample']
    input_size = downsample * h
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    loss = np.zeros((n)).astype('float32')

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
    objness = np.zeros(pred_box.shape[:2])
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
                continue
            if iou_matches[i, j] not in anchor_mask:
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
            scale = 2.0 - gtbox[i, j, 2] * gtbox[i, j, 3]
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 3], th) * scale

            objness[i, an_idx * h * w + gj * w + gi] = 1

            for label_idx in range(class_num):
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx],
                               int(label_idx == gtlabel[i, j]))

        for j in range(mask_num * h * w):
            if objness[i, j] >= 0:
                loss[i] += sce(pred_obj[i, j], objness[i, j])

    return loss


288 289 290 291
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
292
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
293
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
D
dengkaipeng 已提交
294 295
        gtlabel = np.random.randint(0, self.class_num,
                                    self.gtbox_shape[:2]).astype('int32')
296 297 298

        self.attrs = {
            "anchors": self.anchors,
299
            "anchor_mask": self.anchor_mask,
300 301
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
302
            "downsample": self.downsample,
303 304
        }

D
dengkaipeng 已提交
305
        self.inputs = {'X': x, 'GTBox': gtbox, 'GTLabel': gtlabel}
306
        self.outputs = {'Loss': YOLOv3Loss(x, gtbox, gtlabel, self.attrs)}
307 308

    def test_check_output(self):
309 310
        place = core.CPUPlace()
        self.check_output_with_place(place, atol=1e-3)
311

D
dengkaipeng 已提交
312 313 314 315 316
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, ['X'],
            'Loss',
317
            no_grad_set=set(["GTBox", "GTLabel"]),
318
            max_relative_error=0.15)
319 320

    def initTestCase(self):
321 322 323 324 325
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
        self.anchor_mask = [0, 1, 2]
326
        self.class_num = 5
327 328 329 330
        self.ignore_thresh = 0.7
        self.downsample = 32
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
        self.gtbox_shape = (3, 10, 4)
331 332 333 334


if __name__ == "__main__":
    unittest.main()