test_yolov3_loss_op.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest


def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def mse(x, y, num):
    return ((y - x)**2).sum() / num


def bce(x, y, mask):
    x = x.reshape((-1))
    y = y.reshape((-1))
    mask = mask.reshape((-1))

    error_sum = 0.0
    count = 0
    for i in range(x.shape[0]):
        if mask[i] > 0:
            error_sum += y[i] * np.log(x[i]) + (1 - y[i]) * np.log(1 - x[i])
            count += 1
    return error_sum / (-1.0 * count)


def box_iou(box1, box2):
    b1_x1 = box1[0] - box1[2] / 2
    b1_x2 = box1[0] + box1[2] / 2
    b1_y1 = box1[1] - box1[3] / 2
    b1_y2 = box1[1] + box1[3] / 2
    b2_x1 = box2[0] - box2[2] / 2
    b2_x2 = box2[0] + box2[2] / 2
    b2_y1 = box2[1] - box2[3] / 2
    b2_y2 = box2[1] + box2[3] / 2

    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    inter_rect_x1 = max(b1_x1, b2_x1)
    inter_rect_y1 = max(b1_y1, b2_y1)
    inter_rect_x2 = min(b1_x2, b2_x2)
    inter_rect_y2 = min(b1_y2, b2_y2)
    inter_area = max(inter_rect_x2 - inter_rect_x1, 0) * max(
        inter_rect_y2 - inter_rect_y1, 0)

    return inter_area / (b1_area + b2_area + inter_area)


def build_target(gtboxs, attrs, grid_size):
    n, b, _ = gtboxs.shape
    ignore_thresh = attrs["ignore_thresh"]
    img_height = attrs["img_height"]
    anchors = attrs["anchors"]
    class_num = attrs["class_num"]
    an_num = len(anchors) / 2
    obj_mask = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    noobj_mask = np.ones((n, an_num, grid_size, grid_size)).astype('float32')
    tx = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    ty = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    tw = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    th = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    tconf = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
    tcls = np.zeros(
        (n, an_num, grid_size, grid_size, class_num)).astype('float32')

    for i in range(n):
        for j in range(b):
            if gtboxs[i, j, :].sum() == 0:
                continue

            gt_label = int(gtboxs[i, j, 0])
            gx = gtboxs[i, j, 1] * grid_size
            gy = gtboxs[i, j, 2] * grid_size
            gw = gtboxs[i, j, 3] * grid_size
            gh = gtboxs[i, j, 4] * grid_size

            gi = int(gx)
            gj = int(gy)

            gtbox = [0, 0, gw, gh]
            max_iou = 0
            for k in range(an_num):
                anchor_box = [0, 0, anchors[2 * k], anchors[2 * k + 1]]
                iou = box_iou(gtbox, anchor_box)
                if iou > max_iou:
                    max_iou = iou
                    best_an_index = k
                if iou > ignore_thresh:
                    noobj_mask[i, best_an_index, gj, gi] = 0

            obj_mask[i, best_an_index, gj, gi] = 1
            noobj_mask[i, best_an_index, gj, gi] = 0
            tx[i, best_an_index, gj, gi] = gx - gi
            ty[i, best_an_index, gj, gi] = gy - gj
            tw[i, best_an_index, gj, gi] = np.log(gw / anchors[2 *
                                                               best_an_index])
            th[i, best_an_index, gj, gi] = np.log(
                gh / anchors[2 * best_an_index + 1])
            tconf[i, best_an_index, gj, gi] = 1
            tcls[i, best_an_index, gj, gi, gt_label] = 1

    return (tx, ty, tw, th, tconf, tcls, obj_mask, noobj_mask)


def YoloV3Loss(x, gtbox, attrs):
    n, c, h, w = x.shape
    an_num = len(attrs['anchors']) / 2
    class_num = attrs["class_num"]
    x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    pred_x = sigmoid(x[:, :, :, :, 0])
    pred_y = sigmoid(x[:, :, :, :, 1])
    pred_w = x[:, :, :, :, 2]
    pred_h = x[:, :, :, :, 3]
    pred_conf = sigmoid(x[:, :, :, :, 4])
    pred_cls = sigmoid(x[:, :, :, :, 5:])

    tx, ty, tw, th, tconf, tcls, obj_mask, noobj_mask = build_target(
        gtbox, attrs, x.shape[2])

    obj_mask_expand = np.tile(
        np.expand_dims(obj_mask, 4), (1, 1, 1, 1, int(attrs['class_num'])))
    loss_x = mse(pred_x * obj_mask, tx * obj_mask, obj_mask.sum())
    loss_y = mse(pred_y * obj_mask, ty * obj_mask, obj_mask.sum())
    loss_w = mse(pred_w * obj_mask, tw * obj_mask, obj_mask.sum())
    loss_h = mse(pred_h * obj_mask, th * obj_mask, obj_mask.sum())
    loss_conf_obj = bce(pred_conf * obj_mask, tconf * obj_mask, obj_mask)
    loss_conf_noobj = bce(pred_conf * noobj_mask, tconf * noobj_mask,
                          noobj_mask)
    loss_class = bce(pred_cls * obj_mask_expand, tcls * obj_mask_expand,
                     obj_mask_expand)
    # print "loss_x: ", loss_x
    # print "loss_y: ", loss_y
    # print "loss_w: ", loss_w
    # print "loss_h: ", loss_h
    # print "loss_conf_obj: ", loss_conf_obj
    # print "loss_conf_noobj: ", loss_conf_noobj
    # print "loss_class: ", loss_class

    return loss_x + loss_y + loss_w + loss_h + loss_conf_obj + loss_conf_noobj + loss_class


class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
        x = np.random.random(size=self.x_shape).astype('float32')
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
        gtbox[:, :, 0] = np.random.randint(0, self.class_num,
                                           self.gtbox_shape[:2])

        self.attrs = {
            "img_height": self.img_height,
            "anchors": self.anchors,
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
        }

        self.inputs = {'X': x, 'GTBox': gtbox}
        self.outputs = {'Loss': np.array([YoloV3Loss(x, gtbox, self.attrs)])}
        print self.outputs

    def test_check_output(self):
        self.check_output(atol=1e-3)

    # def test_check_grad_normal(self):
    #     self.check_grad(['X', 'Grid'], 'Output', max_relative_error=0.61)

    def initTestCase(self):
        self.img_height = 608
        self.anchors = [10, 13, 16, 30, 33, 23]
        self.class_num = 10
        self.ignore_thresh = 0.5
        self.x_shape = (5, len(self.anchors) / 2 * (5 + self.class_num), 7, 7)
        self.gtbox_shape = (5, 10, 5)


if __name__ == "__main__":
    unittest.main()