api.py 67.1 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18
# Temporary disable isort to avoid circular import
# This can be removed after the circular import is resolved
# isort: skip_file
19 20
from __future__ import annotations

21 22
import os
import pickle
23
import warnings
24
from collections import OrderedDict
25
import inspect
M
Ming-Xu Huang 已提交
26
import threading
27
from typing import Any
28

29
import paddle
J
Jiabin Yang 已提交
30
from paddle.fluid import core, dygraph
31 32 33 34 35
from paddle.fluid.compiler import (
    BuildStrategy,
    CompiledProgram,
    ExecutionStrategy,
)
36
from paddle.fluid.data_feeder import check_type
37 38 39 40
from paddle.fluid.dygraph.base import (
    program_desc_tracing_guard,
    switch_to_static_graph,
)
41 42
from .dy2static import logging_utils
from .dy2static.convert_call_func import (
43
    ConversionOptions,
H
hjyp 已提交
44
    add_ignore_module,
45
)
46
from .dy2static.program_translator import (
47 48 49 50
    ProgramTranslator,
    StaticFunction,
    unwrap_decorators,
)
51
from paddle.jit.translated_layer import (
52 53 54 55 56 57
    TranslatedLayer,
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    INFER_PARAMS_INFO_SUFFIX,
    INFER_PROPERTY_SUFFIX,
)
58
from paddle.nn import Layer
59
from paddle.fluid.executor import Executor, scope_guard
60 61 62 63 64 65 66 67 68 69 70 71
from paddle.fluid.framework import (
    Block,
    Program,
    Variable,
    Parameter,
    EagerParamBase,
)
from paddle.fluid.framework import (
    _current_expected_place,
    _dygraph_guard,
    _dygraph_tracer,
)
72
from paddle.fluid.framework import dygraph_only
73
from paddle.fluid.wrapped_decorator import wrap_decorator
74
from paddle.fluid.io import save_inference_model
75
from paddle.framework import in_dynamic_mode
76

77 78 79 80 81 82 83 84 85

def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


86
def _extract_vars(inputs, result_list, err_tag='inputs'):
87
    if isinstance(inputs, Variable):
88
        result_list.append(inputs)
89
    elif isinstance(inputs, (list, tuple)):
90
        for var in inputs:
91
            _extract_vars(var, result_list, err_tag)
92 93
    else:
        raise TypeError(
94
            "The type of 'each element of {}' in paddle.jit.TracedLayer.trace must be fluid.Variable, but received {}.".format(
95 96 97
                err_tag, type(inputs)
            )
        )
98 99


100
def extract_vars(inputs, err_tag='inputs'):
101
    result_list = []
102
    _extract_vars(inputs, result_list, err_tag)
103 104 105
    return result_list


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

129
          import paddle
130 131
          import paddle.fluid as fluid
          import numpy as np
132
          from paddle.jit.api import dygraph_to_static_func
133 134 135

          @dygraph_to_static_func
          def func(x):
136
              if paddle.mean(x) < 0:
137 138 139 140 141 142
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

143
          x = paddle.full(shape=[3, 3], fill_value=0, dtype='float64')
144 145 146 147 148 149 150 151 152 153 154 155

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
156 157
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
158
        if in_dynamic_mode() or not program_translator.enable_to_static:
159
            logging_utils.warn(
160
                "The decorator 'dygraph_to_static_func' doesn't work in "
R
Ryan 已提交
161
                "dygraph mode or set 'paddle.jit.enable_to_static' to False. "
162 163
                "We will just return dygraph output."
            )
164 165 166
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
167 168 169 170

    return __impl__


171
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
172

173

174 175 176 177 178 179
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
180
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
181
    """
H
hjyp 已提交
182
    decorator_name = "to_static"
183 184 185 186 187 188 189 190 191 192 193

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


194
def ignore_module(modules: list[Any]):
H
hjyp 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    """
    Adds modules that ignore transcription.
    Builtin modules that have been ignored are collections, pdb, copy, inspect, re, numpy, logging, six

    Args:
        modules (List[Any]): Ignored modules that you want to add

    Examples:
        .. code-block:: python

            import scipy
            import astor

            import paddle
            from paddle.jit import ignore_module

            modules = [
               scipy,
               astor
            ]

            ignore_module(modules)

    """
    add_ignore_module(modules)


222 223 224 225 226 227 228 229 230 231 232
def _check_and_set_backend(backend, build_strategy):
    if backend not in ['CINN', None]:
        raise ValueError(
            "The backend of to_static should be 'CINN' or None, but received {}.".format(
                backend
            )
        )
    if backend == 'CINN':
        build_strategy.build_cinn_pass = True


H
hjyp 已提交
233
def to_static(
234 235 236 237 238
    function=None,
    input_spec=None,
    build_strategy=None,
    backend=None,
    **kwargs,
239
):
240 241
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
242
    @to_static handles the Program and Executor of static graph mode and returns
243 244 245 246
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
247
    Args:
248
        function (callable): callable imperative function.
249
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
250
            information of each input Tensor.
251 252 253 254 255
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
256 257
        backend(str, Optional): Specifies compilation backend, which can be `CINN` or None. When backend is `CINN`, CINN compiler will be used to speed up training and inference.
        kwargs: Support keys including `property`, set `property` to True if the fucntion is python property.
258

259

260
    Returns:
261
        Tensor(s): containing the numerical result.
262

263 264
    Examples:
        .. code-block:: python
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
280

281
    """
282
    property = kwargs.get("property", False)
283

284 285
    def decorated(python_func):
        """
286
        Decorates a python function into a StaticFunction object.
287 288 289
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
290

291
        # Step 2. copy some attributes from original python function.
292 293 294 295 296 297 298
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticFunction(
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy,
                property=property,
299
                backend=backend,
300 301
            ),
        )
302 303

        return static_layer
304

305 306 307
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
308 309 310 311
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".format(
                type(build_strategy).__name__
            )
        )
312
    _check_and_set_backend(backend, build_strategy)
313

H
hjyp 已提交
314
    # for usage: `to_static(foo, ...)`
315
    if function is not None:
316
        if isinstance(function, Layer):
317
            if isinstance(function.forward, StaticFunction):
318
                class_name = function.__class__.__name__
319
                logging_utils.warn(
320 321 322 323
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".format(
                        class_name
                    )
                )
324 325 326 327
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
328

H
hjyp 已提交
329
    # for usage: `@to_static`
330
    return decorated
331 332


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
369
    options.attach(func)
370 371 372
    return func


373
class _SaveLoadConfig:
374 375 376 377 378
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
379 380
        # used for `paddle.load`
        self._keep_name_table = False
381 382 383 384

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

385 386
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
387 388 389 390 391
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
392
        self.with_hook = False
393

394 395 396
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

397 398 399 400 401 402
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
403 404
        if spec is None:
            return
405 406
        if not isinstance(spec, list):
            raise TypeError(
407
                "The config `output_spec` should be 'list', but received input type is %s."
408 409
                % type(input)
            )
410
            for var in spec:
W
wanghuancoder 已提交
411
                if not isinstance(var, core.eager.Tensor):
412
                    raise TypeError(
413
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
414 415
                        % type(var)
                    )
416 417 418 419 420 421 422 423
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
424 425
        if filename is None:
            return
426
        if not isinstance(filename, str):
427
            raise TypeError(
428
                "The config `model_filename` should be str, but received input's type is %s."
429 430
                % type(filename)
            )
431
        if len(filename) == 0:
432
            raise ValueError("The config `model_filename` is empty string.")
433 434 435 436 437 438 439 440
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
441 442
        if filename is None:
            return
443
        if not isinstance(filename, str):
444
            raise TypeError(
445
                "The config `params_filename` should be str, but received input's type is %s."
446 447
                % type(filename)
            )
448
        if len(filename) == 0:
449
            raise ValueError("The config `params_filename` is empty string.")
450 451
        self._params_filename = filename

452 453 454 455 456 457
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
458 459
        if value is None:
            return
460 461
        if not isinstance(value, bool):
            raise TypeError(
462
                "The config `keep_name_table` should be bool value, but received input's type is %s."
463 464
                % type(value)
            )
465 466
        self._keep_name_table = value

467

468
def _parse_save_configs(configs):
469
    supported_configs = [
470 471 472 473 474
        'output_spec',
        "with_hook",
        "combine_params",
        "clip_extra",
        "skip_forward",
475
    ]
476 477 478 479 480 481

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
482 483
                % (key)
            )
484 485 486 487

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
488
    inner_config.with_hook = configs.get('with_hook', False)
489
    inner_config.combine_params = configs.get("combine_params", False)
490
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
491
    inner_config.skip_forward = configs.get("skip_forward", False)
492 493 494 495 496 497 498 499 500 501 502 503

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
504 505
                % (key)
            )
506 507 508 509 510 511 512 513 514

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


515
def _get_input_var_names(inputs, input_spec):
516 517 518 519
    name_none_error = (
        "The %s's name is None. "
        "When using jit.save, please set InputSepc's name in "
        "to_static(input_spec=[]) and jit.save(input_spec=[]) "
520
        "and make sure they are consistent."
521 522 523 524 525
    )
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of InputSpec or example Tensor "
        "in input_spec is the same as the name of InputSpec in "
526
        "`to_static` decorated on the Layer.forward method."
527
    )
528
    result_list = []
529
    input_var_names = [
530 531 532
        var.name
        for var in paddle.utils.flatten(inputs)
        if isinstance(var, Variable)
533
    ]
534 535
    if input_spec is None:
        # no prune
536 537 538 539
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
540 541
            spec
            for spec in input_spec
542 543 544 545
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
546 547
        # no prune
        result_list = input_var_names
548
        # if input spec name not in input_var_names, only raise warning
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
W
wanghuancoder 已提交
564
                # the input_spec can be `InputSpec` or `Tensor`
565 566 567 568 569 570 571
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


572
def _get_output_vars(outputs, output_spec, with_hook=False):
573 574 575 576
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of example Tensor "
        "in configs.output_spec is the output tensor of "
577
        "Layer.forward method."
578
    )
579 580 581 582
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
583 584
    result_list = []
    output_vars_dict = OrderedDict()
585
    for var in paddle.utils.flatten(outputs):
586 587 588
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
589
        result_list = list(output_vars_dict.values())
590
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
591
        result_list = list(output_vars_dict.values())
592 593 594 595 596 597 598 599 600 601 602 603
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
623
            "The {}.pdmodel and {} directory exist at the same time, "
624
            "don't know which one to load, please make sure that the specified target "
625
            "of ``path`` is unique.".format(path, path)
626
        )
627
    elif not prefix_format_exist and not directory_format_exist:
628 629 630 631 632
        raise ValueError(
            "The ``path`` (%s) to load model not exists. "
            "Please make sure that *.pdmodel exists or "
            "don't using ``skip_forward=True`` to jit.save." % path
        )
633 634 635 636 637 638 639 640
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
641 642
                    "not take effect."
                )
643 644 645 646 647
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
648 649
                    "not take effect."
                )
650 651 652 653
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
654

655
    return model_path, config
656 657


M
Ming-Xu Huang 已提交
658 659 660 661
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


662
class HookRemoveHelper:
663
    """A HookRemoveHelper that can be used to remove hook."""
M
Ming-Xu Huang 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
699
                    super().__init__()
M
Ming-Xu Huang 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


746
@wrap_decorator
M
Ming-Xu Huang 已提交
747 748 749 750 751 752 753 754 755 756
def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


757
def _save_property(filename: str, property_vals: list[tuple[Any, str]]):
758 759 760
    """class property serialization.

    Args:
761 762
        filename (str): *.meta
        property_vals (list[tuple[Any, str]]): class property.
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
791
@_run_save_pre_hooks
792
@switch_to_static_graph
793
def save(layer, path, input_spec=None, **configs):
794
    """
795
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
796 797
    format model, which can be used for inference or fine-tuning after loading.

798
    It will save the translated program and all related persistable
799
    variables of input Layer to given ``path`` .
800 801

    ``path`` is the prefix of saved objects, and the saved translated program file
802
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
803
    and here also saved some additional variable description information to a file,
804
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
805 806

    The saved model can be loaded by follow APIs:
807 808
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
809 810
      - Other C++ inference APIs

811
    .. note::
812
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
813 814
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

815
    Args:
816
        layer (Layer|function): The Layer or function to be saved.
817
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
818 819 820
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
821
            the original Layer's forward method would be the inputs of the saved model. Default None.
822 823
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
824 825 826
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
827 828 829
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
830

831 832 833 834 835 836
    Returns:
        None

    Examples:
        .. code-block:: python

837
            # example 1: save layer
838
            import numpy as np
839 840 841
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
842

843 844 845
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
846

847 848 849 850 851 852 853
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
854

855 856 857 858
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
859

860 861
                def __len__(self):
                    return self.num_samples
862

863 864
            class LinearNet(nn.Layer):
                def __init__(self):
865
                    super().__init__()
866
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
867

868
                @paddle.jit.to_static
869 870 871
                def forward(self, x):
                    return self._linear(x)

872 873 874 875 876 877 878 879 880 881 882 883
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
884

885 886 887 888
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
889

890 891 892 893 894 895 896
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
897

898 899
            # train
            train(layer, loader, loss_fn, adam)
900

901
            # save
902 903
            path = "example_model/linear"
            paddle.jit.save(layer, path)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
924

925
            save_function()
926 927
    """

928
    # 1. input build & check
929
    prog_translator = ProgramTranslator()
930
    is_prim_infer = core._is_fwd_prim_enabled() and core._is_bwd_prim_enabled()
931
    if not prog_translator.enable_to_static:
932
        raise RuntimeError(
R
Ryan 已提交
933
            "The paddle.jit.save doesn't work when setting 'paddle.jit.enable_to_static' to False."
934
        )
935

936
    if not (
937
        isinstance(layer, (Layer, StaticFunction)) or inspect.isfunction(layer)
938
    ):
939
        raise TypeError(
940
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
941 942
            % type(layer)
        )
943 944 945 946
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
947

948 949
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
950
    # function_spec, so here we save DataParallel._layers instead
951 952 953 954 955 956 957
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

958 959 960 961 962 963
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
964 965
            "file_prefix is empty string."
        )
966 967 968 969

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
970

971 972
    # avoid change user given input_spec
    inner_input_spec = None
973
    if input_spec is not None:
974 975 976
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
977 978 979 980
                if (
                    isinstance(static_func, StaticFunction)
                    and 'forward' != attr_func
                ):
981 982
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
983 984
                        % type(input_spec)
                    )
985

986
        if not isinstance(input_spec, (list, tuple)):
987 988
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
989 990
                % type(input_spec)
            )
991
        inner_input_spec = []
992
        for var in paddle.utils.flatten(input_spec):
993 994
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
W
wanghuancoder 已提交
995
            elif isinstance(var, (core.eager.Tensor, Variable)):
996
                inner_input_spec.append(
997 998
                    paddle.static.InputSpec.from_tensor(var)
                )
999
            else:
1000 1001
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
1002

1003 1004
    # parse configs
    configs = _parse_save_configs(configs)
1005
    # whether outermost layer has pre/post hook, if does, we need also save
1006
    # these operators in program.
1007
    with_hook = configs.with_hook
1008 1009 1010
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
1011

1012
    scope = core.Scope()
1013
    extra_var_info = {}
1014 1015
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
1016 1017
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
1018 1019
    else:
        # layer is function
1020 1021 1022
        functions = [
            layer,
        ]
1023

1024
    combine_vars = {}
1025
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
1026
    concrete_program = None
1027 1028 1029 1030
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
1031 1032 1033 1034
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
1035 1036 1037 1038 1039
                        (
                            immediate_val,
                            layer.__class__.__name__ + '.' + attr_func,
                        )
                    )
1040 1041
                    continue

1042 1043
                concrete_program = (
                    static_func.concrete_program_specify_input_spec(
1044 1045 1046
                        inner_input_spec,
                        with_hook=with_hook,
                        is_prim_infer=is_prim_infer,
1047 1048
                    )
                )
1049
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
1050 1051 1052 1053
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

1054
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
1055
                # inner_input_spec is list[InputSpec], it should be packed with same structure
1056 1057
                # as original input_spec here.
                if inner_input_spec:
1058
                    inner_input_spec = paddle.utils.pack_sequence_as(
1059 1060
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1061
                static_forward = to_static(
1062 1063 1064 1065
                    inner_layer.forward, input_spec=inner_input_spec
                )
                concrete_program = (
                    static_forward.concrete_program_specify_input_spec(
1066
                        with_hook=with_hook, is_prim_infer=is_prim_infer
1067 1068
                    )
                )
1069
                # the input_spec has been used in declarative, which is equal to
H
hjyp 已提交
1070
                # @to_static with input_spec and jit.save without input_spec,
1071 1072 1073 1074
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
1075 1076 1077
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
1078 1079 1080 1081 1082 1083
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

1084 1085
                concrete_program = (
                    attr_func.concrete_program_specify_input_spec(
1086
                        inner_input_spec, is_prim_infer=is_prim_infer
1087 1088
                    )
                )
1089 1090
            else:
                if inner_input_spec:
1091
                    inner_input_spec = paddle.utils.pack_sequence_as(
1092 1093
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1094
                static_function = to_static(
1095 1096
                    attr_func, input_spec=inner_input_spec
                )
1097 1098 1099 1100
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
1101 1102 1103 1104
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.format(
                            layer
                        )
                    )
1105

1106
        # when save multi `StaticFunction`, all `StaticFunction` share params.
1107 1108
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
1109
            dygraph_state_dict = inner_layer.to_static_state_dict()
1110 1111
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
1112 1113
                dygraph_state_dict = (
                    attr_func._class_instance.to_static_state_dict()
1114
                )
1115 1116

        if dygraph_state_dict:
1117 1118 1119 1120
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
1121 1122
            state_names_dict = {}
            state_var_dict = {}
1123
            for structured_name, var in dygraph_state_dict.items():
1124
                state_names_dict[var.name] = structured_name
1125
                state_var_dict[var.name] = var
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
1137 1138 1139 1140 1141 1142 1143 1144
                        param_or_buffer.name
                    ).get_tensor()
                    # src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = (
                        state_var_dict[param_or_buffer.name]
                        .value()
                        .get_tensor()
                    )
1145 1146 1147
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
1148
                    extra_info_dict = {}
1149 1150
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
1151 1152
                            param_or_buffer.name
                        ]
1153
                    extra_info_dict[
1154 1155
                        'stop_gradient'
                    ] = param_or_buffer.stop_gradient
W
wanghuancoder 已提交
1156
                    if isinstance(param_or_buffer, EagerParamBase):
1157 1158
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1159 1160

        # 4. build input & output of save_infernece_model
1161 1162 1163 1164 1165 1166 1167 1168
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
1169 1170 1171
        input_var_names = _get_input_var_names(
            concrete_program.inputs, inner_input_spec
        )
1172 1173

        # NOTE(chenweihang): [ Get output variables ]
1174
        # the rule is like [ Get input variables name ]. For output var,
W
wanghuancoder 已提交
1175
        # we only support Tensor spec, and actually, we only need the
1176
        # var name of output, and we don't recommended to use output_spec
1177 1178
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1179 1180 1181
        output_vars = _get_output_vars(
            concrete_program.outputs, configs.output_spec, with_hook
        )
1182 1183 1184 1185 1186

        # 5. save inference model
        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1187
        # so we don't support set model_filename & params_filename
1188
        if 'forward' == attr_func or not isinstance(layer, Layer):
1189 1190 1191 1192
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
1193 1194 1195
            params_filename = (
                file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX
            )
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1207
                program_only=configs._program_only,
1208 1209
                clip_extra=configs.clip_extra,
            )
1210

1211 1212 1213
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
1214 1215
                input_var_names, output_vars
            )
1216 1217
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1218 1219 1220

    # save shared params
    if combine_params:
1221 1222 1223 1224 1225 1226
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1227 1228
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
1229 1230 1231
            paddle.static.save_vars(
                Executor(_current_expected_place()),
                dirname=model_path,
1232 1233 1234 1235 1236
                vars=list(
                    filter(
                        paddle.framework.io_utils.is_persistable, ordered_vars
                    )
                ),
1237 1238
                filename=params_filename,
            )
1239
        # save property
1240 1241 1242
        property_save_path = os.path.join(
            os.path.normpath(model_path), file_prefix + INFER_PROPERTY_SUFFIX
        )
1243
        _save_property(property_save_path, property_vals)
1244

1245 1246 1247 1248 1249 1250 1251
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1252 1253
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1254 1255
    # configure redundant information to proceed.
    #
1256 1257
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1258 1259
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1260 1261 1262

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1263 1264 1265
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1266 1267

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1268 1269 1270 1271
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1272 1273 1274


@dygraph_only
1275
def load(path, **configs):
1276 1277 1278
    """
    :api_attr: imperative

1279 1280
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1281
    then performing inference or fine-tune training.
1282 1283

    .. note::
1284
        If you load model saved by ``paddle.static.save_inference_model`` ,
1285 1286
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1287
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1288 1289 1290 1291
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1292
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1293 1294
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1295 1296
            DO NOT use them. Default None.
            The following options are currently supported:
1297 1298 1299 1300
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1301 1302
            by default.

1303 1304 1305 1306 1307

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1308
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1309 1310

        .. code-block:: python
G
gouzil 已提交
1311
            :name: code-example1
1312 1313

            import numpy as np
1314 1315 1316
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1317

1318 1319 1320
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1321

1322 1323
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1324

1325 1326 1327 1328
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1329

1330 1331 1332 1333
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1334

1335 1336 1337 1338 1339
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1340
                    super().__init__()
1341
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1342

1343
                @paddle.jit.to_static
1344 1345 1346
                def forward(self, x):
                    return self._linear(x)

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1358
            # 1. train & save model.
1359

1360
            # create network
1361 1362 1363 1364
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1365
            # create data loader
1366 1367 1368 1369 1370 1371
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1372

1373 1374
            # train
            train(layer, loader, loss_fn, adam)
1375

1376
            # save
1377 1378
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1379

1380
            # 2. load model
1381

1382
            # load
1383
            loaded_layer = paddle.jit.load(path)
1384 1385

            # inference
1386 1387 1388
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1389 1390

            # fine-tune
1391 1392 1393
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1394 1395


1396
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1397 1398

        .. code-block:: python
G
gouzil 已提交
1399
            :name: code-example2
1400 1401

            import numpy as np
1402
            import paddle
1403
            import paddle.static as static
1404 1405
            import paddle.nn as nn
            import paddle.optimizer as opt
1406
            import paddle.nn.functional as F
1407

1408 1409 1410
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1411

1412 1413 1414 1415 1416 1417 1418
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1419

1420 1421 1422 1423
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1424

1425 1426
                def __len__(self):
                    return self.num_samples
1427

1428 1429
            paddle.enable_static()

1430 1431
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1432
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1433 1434
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1435

1436
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1437 1438
            optimizer.minimize(avg_loss)

1439 1440 1441
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1442

1443 1444 1445 1446 1447
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1448
                batch_size=BATCH_SIZE,
1449 1450
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1451
                return_list=False,
1452
                num_workers=2)
1453 1454 1455 1456

            # 1. train and save inference model
            for data in loader():
                exe.run(
1457
                    static.default_main_program(),
1458
                    feed=data,
1459 1460 1461
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1462
            paddle.fluid.io.save_inference_model(
1463 1464 1465
                model_path, ["image"], [pred], exe)

            # 2. load model
1466 1467

            # enable dygraph mode
1468 1469 1470 1471
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1472

1473 1474 1475
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1476 1477
            pred = fc(x)

1478
            # fine-tune
1479
            fc.train()
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1497
    """
1498 1499 1500 1501
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1502
    return TranslatedLayer._construct(model_path, config)
1503 1504


1505
@dygraph_only
1506 1507 1508
def _trace(
    layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'
):
1509
    assert isinstance(layer, Layer)
1510 1511 1512 1513 1514 1515 1516 1517 1518

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1519
        original_outputs = layer(*inputs)
1520 1521 1522 1523
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1524
        out_vars = extract_vars(outputs, err_tag='outputs')
1525

1526 1527 1528 1529 1530 1531 1532 1533
        (
            program_desc,
            feed_names,
            fetch_names,
            parameters,
        ) = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix
        )
1534 1535 1536 1537 1538
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1539
    return original_outputs, program, feed_names, fetch_names, parameters
1540 1541


1542
class TracedLayer:
1543
    """
1544
    :api_attr: imperative
1545

1546 1547 1548 1549 1550
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1551 1552 1553 1554

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1555 1556

    All TracedLayer objects should not be created by constructor and should
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1568
        self._params = parameters
1569 1570 1571 1572 1573

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1574
            src_tensor = p.value().get_tensor()
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1598
        This method is the only allowed method to create TracedLayer object.
1599 1600 1601 1602
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1603
            layer (paddle.nn.Layer): the layer object to be traced.
1604 1605
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1606 1607

        Returns:
1608
            tuple: A tuple of 2 items, whose the first item is the output of
1609 1610
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1611

1612
        Examples:
G
gouzil 已提交
1613
            .. code-block:: python
1614

1615
                import paddle
1616

1617
                class ExampleLayer(paddle.nn.Layer):
1618
                    def __init__(self):
1619
                        super().__init__()
1620
                        self._fc = paddle.nn.Linear(3, 10)
1621 1622 1623 1624

                    def forward(self, input):
                        return self._fc(input)

1625

1626 1627 1628 1629 1630 1631
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1632

1633 1634
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1635

1636
                # save the static graph model for inference
1637
                static_layer.save_inference_model('./saved_infer_model')
1638

1639
        """
1640 1641
        assert isinstance(
            layer, Layer
1642
        ), "The type of 'layer' in paddle.jit.TracedLayer.trace must be paddle.nn.Layer, but received {}.".format(
1643 1644
            type(layer)
        )
1645 1646
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1647 1648 1649 1650 1651 1652 1653
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1654
            build_strategy (BuildStrategy, optional): build strategy of
1655 1656 1657 1658 1659 1660 1661 1662
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
G
gouzil 已提交
1663
            .. code-block:: python
1664

1665
                import paddle
1666

1667
                class ExampleLayer(paddle.nn.Layer):
1668
                    def __init__(self):
1669
                        super().__init__()
1670
                        self._fc = paddle.nn.Linear(3, 10)
1671 1672 1673 1674

                    def forward(self, input):
                        return self._fc(input)

1675 1676 1677 1678
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1679

1680 1681
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1682

1683 1684
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1685

1686 1687
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1688 1689 1690

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1691 1692
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
1693
        ), "The type of 'build_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
1694 1695
            type(build_strategy)
        )
1696 1697
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
1698
        ), "The type of 'exec_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
1699 1700
            type(exec_strategy)
        )
1701 1702 1703 1704 1705 1706
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
K
kangguangli 已提交
1707
            self._program,
1708 1709
            build_strategy=self._build_strategy,
        )
1710 1711

    def _build_feed(self, inputs):
1712 1713 1714
        assert isinstance(
            inputs, (list, tuple)
        ), "Inputs should be a list or tuple of variables"
1715 1716
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
1717
        if in_dynamic_mode():
1718
            for x, name in zip(inputs, self._feed_names):
1719
                feed_dict[name] = x.value().get_tensor()
1720 1721 1722 1723 1724 1725 1726 1727
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
1728 1729 1730
        return self._exe.run(
            self._compiled_program, feed=feed, fetch_list=self._fetch_names
        )
1731 1732 1733 1734 1735 1736 1737 1738 1739

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1740
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1741
        """
1742 1743
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1744

1745 1746 1747
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1748
        Args:
1749
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1750
            feed (list[int], optional): the input variable indices of the saved
1751
                inference model. If None, all input variables of the
1752 1753 1754 1755 1756 1757
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1758 1759 1760
            kwargs: Supported keys including
                - clip_extra(bool): whether to clip extra information for every operator. Defaults to True.
                - legacy_format(bool): whether to save program in legacy format. Default to False.
1761 1762

        Returns:
1763
            None
1764 1765

        Examples:
G
gouzil 已提交
1766
            .. code-block:: python
1767 1768

                import numpy as np
1769
                import paddle
1770

1771
                class ExampleLayer(paddle.nn.Layer):
1772
                    def __init__(self):
1773
                        super().__init__()
1774
                        self._fc = paddle.nn.Linear(3, 10)
1775 1776 1777 1778

                    def forward(self, input):
                        return self._fc(input)

1779 1780
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1781 1782
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1783

1784 1785
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1786

1787 1788 1789 1790
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1791
                                                    exe)
1792 1793 1794

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1795
        """
1796 1797 1798 1799
        check_type(
            path,
            "path",
            str,
1800
            "paddle.jit.TracedLayer.save_inference_model",
1801 1802 1803 1804 1805
        )
        check_type(
            feed,
            "feed",
            (type(None), list),
1806
            "paddle.jit.TracedLayer.save_inference_model",
1807
        )
1808 1809
        if isinstance(feed, list):
            for f in feed:
1810
                check_type(
1811 1812 1813
                    f,
                    "each element of feed",
                    int,
1814
                    "paddle.jit.TracedLayer.save_inference_model",
1815 1816 1817 1818 1819
                )
        check_type(
            fetch,
            "fetch",
            (type(None), list),
1820
            "paddle.jit.TracedLayer.save_inference_model",
1821
        )
1822 1823
        if isinstance(fetch, list):
            for f in fetch:
1824
                check_type(
1825 1826 1827
                    f,
                    "each element of fetch",
                    int,
1828
                    "paddle.jit.TracedLayer.save_inference_model",
1829
                )
1830
        clip_extra = kwargs.get('clip_extra', True)
1831 1832 1833 1834 1835 1836
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
1837 1838
                "file_prefix is empty string."
            )
1839 1840 1841 1842 1843

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1844 1845 1846 1847
        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1848
            return [all_vars[idx] for idx in partial_vars]
1849 1850 1851 1852 1853 1854 1855

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
1856
                assert target_var is not None, f"{name} cannot be found"
1857 1858
                target_vars.append(target_var)

1859 1860 1861
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1862
            legacy_format = kwargs.get('legacy_format', False)
1863 1864 1865 1866 1867 1868 1869 1870 1871
            save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                clip_extra=clip_extra,
1872
                legacy_format=legacy_format,
1873
            )