Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5067e3a8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5067e3a8
编写于
1月 20, 2021
作者:
A
Aurelius84
提交者:
GitHub
1月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dy2Static]Enhance check of TracedLayers out vars (#30576)
上级
d1b25ed9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
46 addition
and
24 deletion
+46
-24
python/paddle/fluid/dygraph/jit.py
python/paddle/fluid/dygraph/jit.py
+21
-21
python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
...paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
+25
-3
未找到文件。
python/paddle/fluid/dygraph/jit.py
浏览文件 @
5067e3a8
...
...
@@ -53,21 +53,21 @@ def create_program_from_desc(program_desc):
return
program
def
_extract_vars
(
inputs
,
result_list
):
def
_extract_vars
(
inputs
,
result_list
,
err_tag
=
'inputs'
):
if
isinstance
(
inputs
,
Variable
):
result_list
.
append
(
inputs
)
elif
isinstance
(
inputs
,
(
list
,
tuple
)):
for
var
in
inputs
:
_extract_vars
(
var
,
result_list
)
_extract_vars
(
var
,
result_list
,
err_tag
)
else
:
raise
TypeError
(
"The type of 'each element of
inputs
' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
.
format
(
type
(
inputs
)))
"The type of 'each element of
{}
' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
.
format
(
err_tag
,
type
(
inputs
)))
def
extract_vars
(
inputs
):
def
extract_vars
(
inputs
,
err_tag
=
'inputs'
):
result_list
=
[]
_extract_vars
(
inputs
,
result_list
)
_extract_vars
(
inputs
,
result_list
,
err_tag
)
return
result_list
...
...
@@ -278,8 +278,8 @@ class _SaveLoadConfig(object):
# NOTE: Users rarely use following configs, so these configs are not open to users,
# reducing user learning costs, but we retain the configuration capabilities
# If True, programs are modified to only support direct inference deployment.
# Otherwise,more information will be stored for flexible optimization and re-training.
# If True, programs are modified to only support direct inference deployment.
# Otherwise,more information will be stored for flexible optimization and re-training.
# Currently, only True is supported
self
.
_export_for_deployment
=
True
...
...
@@ -406,7 +406,7 @@ def _get_input_var_names(inputs, input_spec):
elif
input_spec
is
not
None
and
len
(
input_spec
)
==
len
(
input_var_names
):
# no prune
result_list
=
input_var_names
# if input spec name not in input_var_names, only raise warning
# if input spec name not in input_var_names, only raise warning
for
spec
in
input_spec
:
if
spec
.
name
is
None
:
warnings
.
warn
(
name_none_error
%
spec
)
...
...
@@ -624,7 +624,7 @@ def save(layer, path, input_spec=None, **configs):
# NOTE(chenweihang): If the input layer be wrapped by DataParallel,
# the args and kwargs of forward method will can't be parsed by
# function_spec, so here we save DataParallel._layers instead
# function_spec, so here we save DataParallel._layers instead
# DataParallel it self
# NOTE(chenweihang): using inner_layer, do not change input layer
if
isinstance
(
layer
,
paddle
.
DataParallel
):
...
...
@@ -684,7 +684,7 @@ def save(layer, path, input_spec=None, **configs):
static_forward
=
declarative
(
inner_layer
.
forward
,
input_spec
=
inner_input_spec
)
concrete_program
=
static_forward
.
concrete_program
# the input_spec has been used in declarative, which is equal to
# the input_spec has been used in declarative, which is equal to
# @declarative with input_spec and jit.save without input_spec,
# avoid needless warning
inner_input_spec
=
None
...
...
@@ -704,21 +704,21 @@ def save(layer, path, input_spec=None, **configs):
inner_input_spec
)
# NOTE(chenweihang): [ Get output variables ]
# the rule is like [ Get input variables name ]. For output var,
# we only support VarBase spec, and actually, we only need the
# the rule is like [ Get input variables name ]. For output var,
# we only support VarBase spec, and actually, we only need the
# var name of output, and we don't recommended to use output_spec
output_vars
=
_get_output_vars
(
concrete_program
.
outputs
,
configs
.
output_spec
)
# NOTE(chenweihang): we maintain the mapping of variable name to
# structured name, the buffer variable (non-persistable)
# saved to inference program may not need by dygraph Layer,
# saved to inference program may not need by dygraph Layer,
# we only record the state_dict variable's structured name
state_names_dict
=
dict
()
for
structured_name
,
var
in
six
.
iteritems
(
inner_layer
.
state_dict
()):
state_names_dict
[
var
.
name
]
=
structured_name
# 4. share parameters from Layer to scope & record var info
# 4. share parameters from Layer to scope & record var info
for
param_or_buffer
in
concrete_program
.
parameters
:
# share to scope
param_or_buffer_tensor
=
scope
.
var
(
param_or_buffer
.
name
).
get_tensor
(
...
...
@@ -742,7 +742,7 @@ def save(layer, path, input_spec=None, **configs):
# construct new save_inference_model arguments
model_path
=
dirname
# NOTE(chenweihang): because prefix contains model and params filename,
# so we don't support set model_filename & params_filename
# so we don't support set model_filename & params_filename
if
'forward'
==
attr_func
:
model_filename
=
file_prefix
+
INFER_MODEL_SUFFIX
params_filename
=
file_prefix
+
INFER_PARAMS_SUFFIX
...
...
@@ -769,12 +769,12 @@ def save(layer, path, input_spec=None, **configs):
# - Which persistent variable are parameter and which are not
# - Parameter.trainable information
#
# The lost information cannot be recovered when it is loaded again,
# so if we want to perform fine-tune after loading, we may need to
# The lost information cannot be recovered when it is loaded again,
# so if we want to perform fine-tune after loading, we may need to
# configure redundant information to proceed.
#
# Due to compatibility issues, we cannot change the original storage structure,
# but we can save these information in `jit.save` without changing the original
# Due to compatibility issues, we cannot change the original storage structure,
# but we can save these information in `jit.save` without changing the original
# storage to improve user experience. So we save extra information into
# file `***.pdiparams.info`
with
scope_guard
(
scope
):
...
...
@@ -1032,7 +1032,7 @@ def _trace(layer,
outputs
=
[
original_outputs
]
else
:
outputs
=
original_outputs
out_vars
=
[
var
for
var
in
outputs
]
out_vars
=
extract_vars
(
outputs
,
err_tag
=
'outputs'
)
program_desc
,
feed_names
,
fetch_names
,
parameters
=
tracer
.
create_program_desc
(
var_list
,
feed_prefix
,
out_vars
,
fetch_prefix
,
tmp_prefix
)
...
...
python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
浏览文件 @
5067e3a8
...
...
@@ -13,16 +13,18 @@
# limitations under the License.
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
six
import
unittest
import
paddle.nn
as
nn
class
SimpleFCLayer
(
fluid
.
dygraph
.
Layer
):
class
SimpleFCLayer
(
nn
.
Layer
):
def
__init__
(
self
,
feature_size
,
batch_size
,
fc_size
):
super
(
SimpleFCLayer
,
self
).
__init__
()
self
.
_linear
=
fluid
.
dygraph
.
Linear
(
feature_size
,
fc_size
)
self
.
_offset
=
fluid
.
dygraph
.
to_variable
(
self
.
_linear
=
nn
.
Linear
(
feature_size
,
fc_size
)
self
.
_offset
=
paddle
.
to_tensor
(
np
.
random
.
random
((
batch_size
,
fc_size
)).
astype
(
'float32'
))
def
forward
(
self
,
x
):
...
...
@@ -30,6 +32,17 @@ class SimpleFCLayer(fluid.dygraph.Layer):
return
fc
+
self
.
_offset
class
LinearNetWithNone
(
nn
.
Layer
):
def
__init__
(
self
,
feature_size
,
fc_size
):
super
(
LinearNetWithNone
,
self
).
__init__
()
self
.
_linear
=
nn
.
Linear
(
feature_size
,
fc_size
)
def
forward
(
self
,
x
):
fc
=
self
.
_linear
(
x
)
return
[
fc
,
[
None
,
2
]]
class
TestTracedLayerErrMsg
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_size
=
4
...
...
@@ -152,5 +165,14 @@ class TestTracedLayerErrMsg(unittest.TestCase):
return
layer
class
TestOutVarWithNoneErrMsg
(
unittest
.
TestCase
):
def
test_linear_net_with_none
(
self
):
model
=
LinearNetWithNone
(
100
,
16
)
in_x
=
paddle
.
to_tensor
(
np
.
random
.
random
((
4
,
100
)).
astype
(
'float32'
))
with
self
.
assertRaises
(
TypeError
):
dygraph_out
,
traced_layer
=
fluid
.
dygraph
.
TracedLayer
.
trace
(
model
,
[
in_x
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录