Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
08033c86
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
08033c86
编写于
2月 12, 2020
作者:
Z
Zeng Jinle
提交者:
GitHub
2月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix traced layer with non persistable vars, test=develop (#22552)
上级
31b54646
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
141 addition
and
17 deletion
+141
-17
paddle/fluid/imperative/jit/program_desc_tracer.cc
paddle/fluid/imperative/jit/program_desc_tracer.cc
+43
-11
paddle/fluid/imperative/jit/program_desc_tracer.h
paddle/fluid/imperative/jit/program_desc_tracer.h
+9
-2
python/paddle/fluid/dygraph/jit.py
python/paddle/fluid/dygraph/jit.py
+4
-4
python/paddle/fluid/tests/unittests/test_imperative_trace_non_persistable_inputs.py
...unittests/test_imperative_trace_non_persistable_inputs.py
+85
-0
未找到文件。
paddle/fluid/imperative/jit/program_desc_tracer.cc
浏览文件 @
08033c86
...
...
@@ -25,6 +25,7 @@ namespace jit {
class
UniqueBlockVarGenerator
{
public:
UniqueBlockVarGenerator
(
const
VarDescMetaMap
&
all_vars
,
const
VarBaseSet
&
non_exist_input_vars
,
framework
::
BlockDesc
*
block
);
std
::
string
NameOf
(
const
std
::
weak_ptr
<
VarBase
>
&
var
,
...
...
@@ -33,7 +34,8 @@ class UniqueBlockVarGenerator {
private:
void
InsertNewVarInBlock
(
const
std
::
weak_ptr
<
VarBase
>
&
var
,
const
framework
::
VarDesc
&
ref_desc
,
const
std
::
string
&
name
);
const
std
::
string
&
name
,
bool
force_persistable
=
false
);
private:
const
VarDescMetaMap
&
all_vars_
;
...
...
@@ -46,13 +48,18 @@ class UniqueBlockVarGenerator {
std
::
unordered_set
<
std
::
string
>
existing_names_
;
};
UniqueBlockVarGenerator
::
UniqueBlockVarGenerator
(
const
VarDescMetaMap
&
all_vars
,
framework
::
BlockDesc
*
block
)
UniqueBlockVarGenerator
::
UniqueBlockVarGenerator
(
const
VarDescMetaMap
&
all_vars
,
const
VarBaseSet
&
non_exist_input_vars
,
framework
::
BlockDesc
*
block
)
:
all_vars_
(
all_vars
),
block_
(
block
)
{
for
(
auto
&
var_pair
:
all_vars_
)
{
auto
*
var_desc
=
var_pair
.
second
.
get
();
if
(
var_desc
->
Persistable
())
{
InsertNewVarInBlock
(
var_pair
.
first
,
*
var_desc
,
var_desc
->
Name
());
}
else
if
(
non_exist_input_vars
.
count
(
var_pair
.
first
.
lock
())
>
0
)
{
VLOG
(
10
)
<<
"Mark "
<<
var_desc
->
Name
()
<<
" as persistable"
;
InsertNewVarInBlock
(
var_pair
.
first
,
*
var_desc
,
var_desc
->
Name
(),
/*force_persistable=*/
true
);
}
}
}
...
...
@@ -90,12 +97,15 @@ std::string UniqueBlockVarGenerator::NameOf(const std::weak_ptr<VarBase> &var,
void
UniqueBlockVarGenerator
::
InsertNewVarInBlock
(
const
std
::
weak_ptr
<
VarBase
>
&
var
,
const
framework
::
VarDesc
&
var_desc
,
const
std
::
string
&
name
)
{
const
std
::
string
&
name
,
bool
force_persistable
)
{
var_to_name_
[
var
]
=
name
;
existing_names_
.
insert
(
name
);
auto
*
new_var_desc
=
block_
->
Var
(
name
);
*
new_var_desc
=
var_desc
;
new_var_desc
->
SetName
(
name
);
if
(
force_persistable
)
{
new_var_desc
->
SetPersistable
(
true
);
}
}
void
ProgramDescTracer
::
InsertOp
(
const
std
::
string
&
type
,
...
...
@@ -106,13 +116,13 @@ void ProgramDescTracer::InsertOp(const std::string &type,
auto
&
new_op
=
ops_
.
back
();
for
(
auto
&
pair
:
new_op
->
Inputs
())
{
for
(
auto
&
var
:
pair
.
second
)
{
InsertVarIfNotExist
(
var
.
lock
());
InsertVarIfNotExist
(
var
.
lock
()
,
true
);
}
}
for
(
auto
&
pair
:
new_op
->
Outputs
())
{
for
(
auto
&
var
:
pair
.
second
)
{
InsertVarIfNotExist
(
var
.
lock
());
InsertVarIfNotExist
(
var
.
lock
()
,
false
);
}
}
}
...
...
@@ -125,7 +135,12 @@ TracedProgramTuple ProgramDescTracer::CreateProgramDesc(
std
::
unique_ptr
<
framework
::
ProgramDesc
>
prog
(
new
framework
::
ProgramDesc
());
auto
*
block
=
prog
->
MutableBlock
(
0
);
UniqueBlockVarGenerator
generator
(
vars_
,
block
);
auto
non_exist_vars_copy
=
non_exist_input_vars_
;
for
(
auto
&
feed_var
:
feed_vars
)
{
non_exist_vars_copy
.
erase
(
feed_var
);
}
UniqueBlockVarGenerator
generator
(
vars_
,
non_exist_vars_copy
,
block
);
std
::
vector
<
std
::
string
>
feed_var_names
;
for
(
auto
&
feed_var
:
feed_vars
)
{
...
...
@@ -164,21 +179,37 @@ TracedProgramTuple ProgramDescTracer::CreateProgramDesc(
}
prog
->
Flush
();
std
::
vector
<
std
::
shared_ptr
<
VarBase
>>
persistable_vars
(
non_exist_vars_copy
.
begin
(),
non_exist_vars_copy
.
end
());
for
(
auto
&
pair
:
vars_
)
{
if
(
pair
.
second
->
Persistable
())
{
auto
var
=
pair
.
first
.
lock
();
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Persistable var %s does not exist"
,
pair
.
second
->
Name
()));
persistable_vars
.
emplace_back
(
var
);
}
}
return
std
::
make_tuple
(
std
::
move
(
prog
),
std
::
move
(
feed_var_names
),
std
::
move
(
fetch_var_names
));
std
::
move
(
fetch_var_names
),
std
::
move
(
persistable_vars
));
}
void
ProgramDescTracer
::
InsertVarIfNotExist
(
const
std
::
shared_ptr
<
VarBase
>
&
new_var
)
{
const
std
::
shared_ptr
<
VarBase
>
&
new_var
,
bool
is_input
)
{
PADDLE_ENFORCE_NOT_NULL
(
new_var
);
if
(
vars_
.
count
(
new_var
)
!=
0
)
return
;
auto
new_var_desc
=
new
framework
::
VarDesc
(
""
);
vars_
[
new_var
].
reset
(
new_var_desc
);
if
(
new_var
->
Persistable
())
{
if
(
new_var
->
Persistable
()
||
is_input
)
{
new_var_desc
->
SetName
(
new_var
->
Name
());
new_var_desc
->
SetPersistable
(
true
);
new_var_desc
->
SetPersistable
(
new_var
->
Persistable
());
if
(
!
new_var
->
Persistable
())
{
non_exist_input_vars_
.
insert
(
new_var
);
}
}
else
{
new_var_desc
->
SetPersistable
(
false
);
}
...
...
@@ -204,6 +235,7 @@ void ProgramDescTracer::InsertVarIfNotExist(
void
ProgramDescTracer
::
Reset
()
{
ops_
.
clear
();
vars_
.
clear
();
non_exist_input_vars_
.
clear
();
}
}
// namespace jit
...
...
paddle/fluid/imperative/jit/program_desc_tracer.h
浏览文件 @
08033c86
...
...
@@ -16,6 +16,7 @@
#include <map>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
...
...
@@ -34,10 +35,14 @@ using VarDescMetaMap =
std
::
map
<
std
::
weak_ptr
<
VarBase
>
,
std
::
unique_ptr
<
framework
::
VarDesc
>
,
std
::
owner_less
<
std
::
weak_ptr
<
VarBase
>>>
;
using
VarBaseSet
=
std
::
set
<
std
::
shared_ptr
<
VarBase
>
,
std
::
owner_less
<
std
::
shared_ptr
<
VarBase
>>>
;
using
TracedProgramTuple
=
std
::
tuple
<
std
::
unique_ptr
<
framework
::
ProgramDesc
>
/*program*/
,
std
::
vector
<
std
::
string
>
/*feed_var_names*/
,
std
::
vector
<
std
::
string
>
/*fetch_var_names*/
>
;
std
::
vector
<
std
::
string
>
/*fetch_var_names*/
,
std
::
vector
<
std
::
shared_ptr
<
VarBase
>>
/*persistable_vars*/
>
;
class
ProgramDescTracer
{
DISABLE_COPY_AND_ASSIGN
(
ProgramDescTracer
);
...
...
@@ -58,11 +63,13 @@ class ProgramDescTracer {
void
Reset
();
private:
void
InsertVarIfNotExist
(
const
std
::
shared_ptr
<
VarBase
>
&
new_var
);
void
InsertVarIfNotExist
(
const
std
::
shared_ptr
<
VarBase
>
&
new_var
,
bool
is_input
);
private:
std
::
vector
<
std
::
unique_ptr
<
OpDescMeta
>>
ops_
;
VarDescMetaMap
vars_
;
VarBaseSet
non_exist_input_vars_
;
};
}
// namespace jit
...
...
python/paddle/fluid/dygraph/jit.py
浏览文件 @
08033c86
...
...
@@ -93,14 +93,14 @@ def _trace(layer,
outputs
=
original_outputs
out_vars
=
[
var
for
var
in
outputs
]
program_desc
,
feed_names
,
fetch_names
=
tracer
.
create_program_desc
(
program_desc
,
feed_names
,
fetch_names
,
parameters
=
tracer
.
create_program_desc
(
var_list
,
feed_prefix
,
out_vars
,
fetch_prefix
,
tmp_prefix
)
tracer
.
reset
()
with
_dygraph_guard
(
None
):
program
=
create_program_from_desc
(
program_desc
)
return
original_outputs
,
program
,
feed_names
,
fetch_names
return
original_outputs
,
program
,
feed_names
,
fetch_names
,
parameters
class
TracedLayer
(
object
):
...
...
@@ -199,8 +199,8 @@ class TracedLayer(object):
# save the static graph model for inference
static_layer.save_inference_model(dirname='./saved_infer_model')
"""
outs
,
prog
,
feed
,
fetch
=
_trace
(
layer
,
inputs
)
traced
=
TracedLayer
(
prog
,
layer
.
parameters
()
,
feed
,
fetch
)
outs
,
prog
,
feed
,
fetch
,
parameters
=
_trace
(
layer
,
inputs
)
traced
=
TracedLayer
(
prog
,
parameters
,
feed
,
fetch
)
return
outs
,
traced
def
set_strategy
(
self
,
build_strategy
=
None
,
exec_strategy
=
None
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_trace_non_persistable_inputs.py
0 → 100644
浏览文件 @
08033c86
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
import
numpy
as
np
import
six
import
os
class
SimpleFCLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
feature_size
,
batch_size
,
fc_size
):
super
(
SimpleFCLayer
,
self
).
__init__
()
self
.
_linear
=
fluid
.
dygraph
.
Linear
(
feature_size
,
fc_size
)
self
.
_offset
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
batch_size
,
fc_size
)).
astype
(
'float32'
))
def
forward
(
self
,
x
):
fc
=
self
.
_linear
(
x
)
return
fc
+
self
.
_offset
class
TestTracedLayerRecordNonPersistableInput
(
unittest
.
TestCase
):
def
test_main
(
self
):
traced_layer
=
None
with
fluid
.
dygraph
.
guard
():
feature_size
=
3
batch_size
=
4
fc_size
=
2
layer
=
SimpleFCLayer
(
feature_size
,
batch_size
,
fc_size
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
,
parameter_list
=
layer
.
parameters
())
expected_persistable_vars
=
set
([
layer
.
_linear
.
weight
.
name
,
layer
.
_linear
.
bias
.
name
,
layer
.
_offset
.
name
])
for
_
in
six
.
moves
.
range
(
10
):
in_x
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
'float32'
))
if
traced_layer
is
None
:
dygraph_out
,
traced_layer
=
fluid
.
dygraph
.
TracedLayer
.
trace
(
layer
,
[
in_x
])
else
:
dygraph_out
=
layer
(
in_x
)
dygraph_out_numpy
=
dygraph_out
.
numpy
()
static_out
=
traced_layer
([
in_x
])[
0
]
self
.
assertTrue
(
np
.
array_equal
(
dygraph_out_numpy
,
static_out
))
loss
=
fluid
.
layers
.
reduce_mean
(
dygraph_out
)
loss
.
backward
()
optimizer
.
minimize
(
loss
)
del
layer
program
=
traced_layer
.
program
actual_persistable_vars
=
set
()
for
var
in
program
.
list_vars
():
if
var
.
persistable
:
actual_persistable_vars
.
add
(
var
.
name
)
self
.
assertEqual
(
actual_persistable_vars
,
expected_persistable_vars
)
dirname
=
'./traced_layer_test_non_persistable_vars'
traced_layer
.
save_inference_model
(
dirname
=
dirname
)
filenames
=
set
([
f
for
f
in
os
.
listdir
(
dirname
)
if
f
!=
'__model__'
])
self
.
assertEqual
(
filenames
,
expected_persistable_vars
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录