api.py 66.1 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18
# Temporary disable isort to avoid circular import
# This can be removed after the circular import is resolved
# isort: skip_file
19 20
from __future__ import annotations

21 22
import os
import pickle
23
import warnings
24
from collections import OrderedDict
25
import inspect
M
Ming-Xu Huang 已提交
26
import threading
H
hjyp 已提交
27
from typing import Any, List
28

29
import paddle
J
Jiabin Yang 已提交
30
from paddle.fluid import core, dygraph
31 32 33 34 35
from paddle.fluid.compiler import (
    BuildStrategy,
    CompiledProgram,
    ExecutionStrategy,
)
36
from paddle.fluid.data_feeder import check_type
37
from paddle.fluid.layers.utils import flatten, pack_sequence_as
38 39 40 41
from paddle.fluid.dygraph.base import (
    program_desc_tracing_guard,
    switch_to_static_graph,
)
42 43
from .dy2static import logging_utils
from .dy2static.convert_call_func import (
44
    ConversionOptions,
H
hjyp 已提交
45
    add_ignore_module,
46
)
47
from .dy2static.program_translator import (
48 49 50 51
    ProgramTranslator,
    StaticFunction,
    unwrap_decorators,
)
52
from paddle.jit.translated_layer import (
53 54 55 56 57 58
    TranslatedLayer,
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    INFER_PARAMS_INFO_SUFFIX,
    INFER_PROPERTY_SUFFIX,
)
59 60
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
61 62 63 64 65 66 67 68 69 70 71 72 73
from paddle.fluid.framework import (
    Block,
    ParamBase,
    Program,
    Variable,
    Parameter,
    EagerParamBase,
)
from paddle.fluid.framework import (
    _current_expected_place,
    _dygraph_guard,
    _dygraph_tracer,
)
J
Jiabin Yang 已提交
74
from paddle.fluid.framework import dygraph_only, _non_static_mode
75
from paddle.fluid.wrapped_decorator import wrap_decorator
76

77 78 79 80 81 82 83 84 85

def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


86
def _extract_vars(inputs, result_list, err_tag='inputs'):
87
    if isinstance(inputs, Variable):
88
        result_list.append(inputs)
89
    elif isinstance(inputs, (list, tuple)):
90
        for var in inputs:
91
            _extract_vars(var, result_list, err_tag)
92 93
    else:
        raise TypeError(
94
            "The type of 'each element of {}' in paddle.jit.TracedLayer.trace must be fluid.Variable, but received {}.".format(
95 96 97
                err_tag, type(inputs)
            )
        )
98 99


100
def extract_vars(inputs, err_tag='inputs'):
101
    result_list = []
102
    _extract_vars(inputs, result_list, err_tag)
103 104 105
    return result_list


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
131
          from paddle.jit.api import dygraph_to_static_func
132 133 134

          @dygraph_to_static_func
          def func(x):
135
              if paddle.mean(x) < 0:
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
155 156
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
157
        if _non_static_mode() or not program_translator.enable_to_static:
158
            logging_utils.warn(
159
                "The decorator 'dygraph_to_static_func' doesn't work in "
R
Ryan 已提交
160
                "dygraph mode or set 'paddle.jit.enable_to_static' to False. "
161 162
                "We will just return dygraph output."
            )
163 164 165
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
166 167 168 169

    return __impl__


170
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
171

172

173 174 175 176 177 178
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
179
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
180
    """
H
hjyp 已提交
181
    decorator_name = "to_static"
182 183 184 185 186 187 188 189 190 191 192

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


H
hjyp 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
def ignore_module(modules: List[Any]):
    """
    Adds modules that ignore transcription.
    Builtin modules that have been ignored are collections, pdb, copy, inspect, re, numpy, logging, six

    Args:
        modules (List[Any]): Ignored modules that you want to add

    Examples:
        .. code-block:: python

            import scipy
            import astor

            import paddle
            from paddle.jit import ignore_module

            modules = [
               scipy,
               astor
            ]

            ignore_module(modules)

    """
    add_ignore_module(modules)


H
hjyp 已提交
221
def to_static(
222 223
    function=None, input_spec=None, build_strategy=None, property=False
):
224 225
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
226
    @to_static handles the Program and Executor of static graph mode and returns
227 228 229 230
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
231

232
    Args:
233
        function (callable): callable imperative function.
234
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
235
            information of each input Tensor.
236 237 238 239 240
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
241
        property(bool, Optional): whether the fucntion is python property. The default is False.
242

243

244
    Returns:
245
        Tensor(s): containing the numerical result.
246

247 248
    Examples:
        .. code-block:: python
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
264

265
    """
266

267 268
    def decorated(python_func):
        """
269
        Decorates a python function into a StaticFunction object.
270 271 272
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
273

274
        # Step 2. copy some attributes from original python function.
275 276 277 278 279 280 281 282 283
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticFunction(
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy,
                property=property,
            ),
        )
284 285

        return static_layer
286

287 288 289
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
290 291 292 293
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".format(
                type(build_strategy).__name__
            )
        )
294

H
hjyp 已提交
295
    # for usage: `to_static(foo, ...)`
296
    if function is not None:
297
        if isinstance(function, Layer):
298
            if isinstance(function.forward, StaticFunction):
299
                class_name = function.__class__.__name__
300
                logging_utils.warn(
301 302 303 304
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".format(
                        class_name
                    )
                )
305 306 307 308
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
309

H
hjyp 已提交
310
    # for usage: `@to_static`
311
    return decorated
312 313


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
350
    options.attach(func)
351 352 353
    return func


354
class _SaveLoadConfig:
355 356 357 358 359
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
360 361
        # used for `paddle.load`
        self._keep_name_table = False
362 363 364 365

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

366 367
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
368 369 370 371 372
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
373
        self.with_hook = False
374

375 376 377
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

378 379 380 381 382 383
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
384 385
        if spec is None:
            return
386 387
        if not isinstance(spec, list):
            raise TypeError(
388
                "The config `output_spec` should be 'list', but received input type is %s."
389 390
                % type(input)
            )
391 392 393
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
394
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
395 396
                        % type(var)
                    )
397 398 399 400 401 402 403 404
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
405 406
        if filename is None:
            return
407
        if not isinstance(filename, str):
408
            raise TypeError(
409
                "The config `model_filename` should be str, but received input's type is %s."
410 411
                % type(filename)
            )
412
        if len(filename) == 0:
413
            raise ValueError("The config `model_filename` is empty string.")
414 415 416 417 418 419 420 421
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
422 423
        if filename is None:
            return
424
        if not isinstance(filename, str):
425
            raise TypeError(
426
                "The config `params_filename` should be str, but received input's type is %s."
427 428
                % type(filename)
            )
429
        if len(filename) == 0:
430
            raise ValueError("The config `params_filename` is empty string.")
431 432
        self._params_filename = filename

433 434 435 436 437 438
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
439 440
        if value is None:
            return
441 442
        if not isinstance(value, bool):
            raise TypeError(
443
                "The config `keep_name_table` should be bool value, but received input's type is %s."
444 445
                % type(value)
            )
446 447
        self._keep_name_table = value

448

449
def _parse_save_configs(configs):
450
    supported_configs = [
451 452 453 454 455
        'output_spec',
        "with_hook",
        "combine_params",
        "clip_extra",
        "skip_forward",
456
    ]
457 458 459 460 461 462

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
463 464
                % (key)
            )
465 466 467 468

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
469
    inner_config.with_hook = configs.get('with_hook', False)
470
    inner_config.combine_params = configs.get("combine_params", False)
471
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
472
    inner_config.skip_forward = configs.get("skip_forward", False)
473 474 475 476 477 478 479 480 481 482 483 484

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
485 486
                % (key)
            )
487 488 489 490 491 492 493 494 495

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


496
def _get_input_var_names(inputs, input_spec):
497 498 499 500
    name_none_error = (
        "The %s's name is None. "
        "When using jit.save, please set InputSepc's name in "
        "to_static(input_spec=[]) and jit.save(input_spec=[]) "
501
        "and make sure they are consistent."
502 503 504 505 506
    )
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of InputSpec or example Tensor "
        "in input_spec is the same as the name of InputSpec in "
507
        "`to_static` decorated on the Layer.forward method."
508
    )
509
    result_list = []
510 511 512
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
513 514
    if input_spec is None:
        # no prune
515 516 517 518
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
519 520
            spec
            for spec in input_spec
521 522 523 524
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
525 526
        # no prune
        result_list = input_var_names
527
        # if input spec name not in input_var_names, only raise warning
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


551
def _get_output_vars(outputs, output_spec, with_hook=False):
552 553 554 555
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of example Tensor "
        "in configs.output_spec is the output tensor of "
556
        "Layer.forward method."
557
    )
558 559 560 561
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
562 563
    result_list = []
    output_vars_dict = OrderedDict()
564
    for var in flatten(outputs):
565 566 567
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
568
        result_list = list(output_vars_dict.values())
569
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
570
        result_list = list(output_vars_dict.values())
571 572 573 574 575 576 577 578 579 580 581 582
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
604 605
            "of ``path`` is unique." % (path, path)
        )
606
    elif not prefix_format_exist and not directory_format_exist:
607 608 609 610 611
        raise ValueError(
            "The ``path`` (%s) to load model not exists. "
            "Please make sure that *.pdmodel exists or "
            "don't using ``skip_forward=True`` to jit.save." % path
        )
612 613 614 615 616 617 618 619
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
620 621
                    "not take effect."
                )
622 623 624 625 626
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
627 628
                    "not take effect."
                )
629 630 631 632
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
633

634
    return model_path, config
635 636


M
Ming-Xu Huang 已提交
637 638 639 640
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


641
class HookRemoveHelper:
642
    """A HookRemoveHelper that can be used to remove hook."""
M
Ming-Xu Huang 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
678
                    super().__init__()
M
Ming-Xu Huang 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


725
@wrap_decorator
M
Ming-Xu Huang 已提交
726 727 728 729 730 731 732 733 734 735
def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


736
def _save_property(filename: str, property_vals: list[tuple[Any, str]]):
737 738 739
    """class property serialization.

    Args:
740 741
        filename (str): *.meta
        property_vals (list[tuple[Any, str]]): class property.
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
770
@_run_save_pre_hooks
771
@switch_to_static_graph
772
def save(layer, path, input_spec=None, **configs):
773
    """
774
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
775 776
    format model, which can be used for inference or fine-tuning after loading.

777
    It will save the translated program and all related persistable
778
    variables of input Layer to given ``path`` .
779 780

    ``path`` is the prefix of saved objects, and the saved translated program file
781
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
782
    and here also saved some additional variable description information to a file,
783
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
784 785

    The saved model can be loaded by follow APIs:
786 787
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
788 789
      - Other C++ inference APIs

790
    .. note::
791
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
792 793
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

794
    Args:
795
        layer (Layer|function): The Layer or function to be saved.
796
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
797 798 799
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
800
            the original Layer's forward method would be the inputs of the saved model. Default None.
801 802
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
803 804 805
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
806 807 808
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
809

810 811 812 813 814 815
    Returns:
        None

    Examples:
        .. code-block:: python

816
            # example 1: save layer
817
            import numpy as np
818 819 820
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
821

822 823 824
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
825

826 827 828 829 830 831 832
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
833

834 835 836 837
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
838

839 840
                def __len__(self):
                    return self.num_samples
841

842 843
            class LinearNet(nn.Layer):
                def __init__(self):
844
                    super().__init__()
845
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
846

847
                @paddle.jit.to_static
848 849 850
                def forward(self, x):
                    return self._linear(x)

851 852 853 854 855 856 857 858 859 860 861 862
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
863

864 865 866 867
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
868

869 870 871 872 873 874 875
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
876

877 878
            # train
            train(layer, loader, loss_fn, adam)
879

880
            # save
881 882
            path = "example_model/linear"
            paddle.jit.save(layer, path)
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
903

904
            save_function()
905 906
    """

907
    # 1. input build & check
908
    prog_translator = ProgramTranslator()
909
    if not prog_translator.enable_to_static:
910
        raise RuntimeError(
R
Ryan 已提交
911
            "The paddle.jit.save doesn't work when setting 'paddle.jit.enable_to_static' to False."
912
        )
913

914 915 916 917 918
    if not (
        isinstance(layer, Layer)
        or inspect.isfunction(layer)
        or isinstance(layer, StaticFunction)
    ):
919
        raise TypeError(
920
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
921 922
            % type(layer)
        )
923 924 925 926
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
927

928 929
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
930
    # function_spec, so here we save DataParallel._layers instead
931 932 933 934 935 936 937
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

938 939 940 941 942 943
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
944 945
            "file_prefix is empty string."
        )
946 947 948 949

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
950

951 952
    # avoid change user given input_spec
    inner_input_spec = None
953
    if input_spec is not None:
954 955 956
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
957 958 959 960
                if (
                    isinstance(static_func, StaticFunction)
                    and 'forward' != attr_func
                ):
961 962
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
963 964
                        % type(input_spec)
                    )
965

966
        if not isinstance(input_spec, (list, tuple)):
967 968
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
969 970
                % type(input_spec)
            )
971
        inner_input_spec = []
972
        for var in flatten(input_spec):
973 974
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
975
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
976
                inner_input_spec.append(
977 978
                    paddle.static.InputSpec.from_tensor(var)
                )
979
            else:
980 981
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
982

983 984
    # parse configs
    configs = _parse_save_configs(configs)
985
    # whether outermost layer has pre/post hook, if does, we need also save
986
    # these operators in program.
987
    with_hook = configs.with_hook
988 989 990
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
991

992 993
    scope = core.Scope()
    extra_var_info = dict()
994 995
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
996 997
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
998 999
    else:
        # layer is function
1000 1001 1002
        functions = [
            layer,
        ]
1003

1004
    combine_vars = {}
1005
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
1006
    concrete_program = None
1007 1008 1009 1010
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
1011 1012 1013 1014
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
1015 1016 1017 1018 1019
                        (
                            immediate_val,
                            layer.__class__.__name__ + '.' + attr_func,
                        )
                    )
1020 1021
                    continue

1022 1023 1024 1025 1026
                concrete_program = (
                    static_func.concrete_program_specify_input_spec(
                        inner_input_spec, with_hook=with_hook
                    )
                )
1027
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
1028 1029 1030 1031
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

1032
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
1033
                # inner_input_spec is list[InputSpec], it should be packed with same structure
1034 1035
                # as original input_spec here.
                if inner_input_spec:
1036 1037 1038
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1039
                static_forward = to_static(
1040 1041 1042 1043 1044 1045 1046
                    inner_layer.forward, input_spec=inner_input_spec
                )
                concrete_program = (
                    static_forward.concrete_program_specify_input_spec(
                        with_hook=with_hook
                    )
                )
1047
                # the input_spec has been used in declarative, which is equal to
H
hjyp 已提交
1048
                # @to_static with input_spec and jit.save without input_spec,
1049 1050 1051 1052
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
1053 1054 1055
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
1056 1057 1058 1059 1060 1061
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

1062 1063 1064 1065 1066
                concrete_program = (
                    attr_func.concrete_program_specify_input_spec(
                        inner_input_spec
                    )
                )
1067 1068
            else:
                if inner_input_spec:
1069 1070 1071
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1072
                static_function = to_static(
1073 1074
                    attr_func, input_spec=inner_input_spec
                )
1075 1076 1077 1078
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
1079 1080 1081 1082
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.format(
                            layer
                        )
                    )
1083

1084
        # when save multi `StaticFunction`, all `StaticFunction` share params.
1085 1086
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
1087
            dygraph_state_dict = inner_layer.to_static_state_dict()
1088 1089
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
1090 1091
                dygraph_state_dict = (
                    attr_func._class_instance.to_static_state_dict()
1092
                )
1093 1094

        if dygraph_state_dict:
1095 1096 1097 1098 1099
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
1100
            state_var_dict = dict()
1101
            for structured_name, var in dygraph_state_dict.items():
1102
                state_names_dict[var.name] = structured_name
1103
                state_var_dict[var.name] = var
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
1115 1116 1117 1118 1119 1120 1121 1122
                        param_or_buffer.name
                    ).get_tensor()
                    # src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = (
                        state_var_dict[param_or_buffer.name]
                        .value()
                        .get_tensor()
                    )
1123 1124 1125 1126 1127 1128
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
1129 1130
                            param_or_buffer.name
                        ]
1131
                    extra_info_dict[
1132 1133
                        'stop_gradient'
                    ] = param_or_buffer.stop_gradient
1134 1135 1136
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1137 1138

        # 4. build input & output of save_infernece_model
1139 1140 1141 1142 1143 1144 1145 1146
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
1147 1148 1149
        input_var_names = _get_input_var_names(
            concrete_program.inputs, inner_input_spec
        )
1150 1151

        # NOTE(chenweihang): [ Get output variables ]
1152 1153
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
1154
        # var name of output, and we don't recommended to use output_spec
1155 1156
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1157 1158 1159
        output_vars = _get_output_vars(
            concrete_program.outputs, configs.output_spec, with_hook
        )
1160 1161 1162 1163 1164 1165 1166

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1167
        # so we don't support set model_filename & params_filename
1168
        if 'forward' == attr_func or not isinstance(layer, Layer):
1169 1170 1171 1172
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
1173 1174 1175
            params_filename = (
                file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX
            )
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1187
                program_only=configs._program_only,
1188 1189
                clip_extra=configs.clip_extra,
            )
1190

1191 1192 1193
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
1194 1195
                input_var_names, output_vars
            )
1196 1197
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1198 1199 1200

    # save shared params
    if combine_params:
1201 1202 1203 1204 1205 1206
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1207 1208
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
1209 1210 1211
            paddle.static.save_vars(
                Executor(_current_expected_place()),
                dirname=model_path,
1212 1213 1214 1215 1216
                vars=list(
                    filter(
                        paddle.framework.io_utils.is_persistable, ordered_vars
                    )
                ),
1217 1218
                filename=params_filename,
            )
1219
        # save property
1220 1221 1222
        property_save_path = os.path.join(
            os.path.normpath(model_path), file_prefix + INFER_PROPERTY_SUFFIX
        )
1223
        _save_property(property_save_path, property_vals)
1224

1225 1226 1227 1228 1229 1230 1231
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1232 1233
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1234 1235
    # configure redundant information to proceed.
    #
1236 1237
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1238 1239
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1240 1241 1242

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1243 1244 1245
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1246 1247

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1248 1249 1250 1251
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1252 1253 1254


@dygraph_only
1255
def load(path, **configs):
1256 1257 1258
    """
    :api_attr: imperative

1259 1260
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1261
    then performing inference or fine-tune training.
1262 1263

    .. note::
1264
        If you load model saved by ``paddle.static.save_inference_model`` ,
1265 1266
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1267
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1268 1269 1270 1271
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1272
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1273 1274
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1275 1276
            DO NOT use them. Default None.
            The following options are currently supported:
1277 1278 1279 1280
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1281 1282
            by default.

1283 1284 1285 1286 1287

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1288
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1289 1290 1291 1292

        .. code-block:: python

            import numpy as np
1293 1294 1295
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1296

1297 1298 1299
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1300

1301 1302
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1303

1304 1305 1306 1307
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1308

1309 1310 1311 1312
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1313

1314 1315 1316 1317 1318
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1319
                    super().__init__()
1320
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1321

1322
                @paddle.jit.to_static
1323 1324 1325
                def forward(self, x):
                    return self._linear(x)

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1337
            # 1. train & save model.
1338

1339
            # create network
1340 1341 1342 1343
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1344
            # create data loader
1345 1346 1347 1348 1349 1350
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1351

1352 1353
            # train
            train(layer, loader, loss_fn, adam)
1354

1355
            # save
1356 1357
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1358

1359
            # 2. load model
1360

1361
            # load
1362
            loaded_layer = paddle.jit.load(path)
1363 1364

            # inference
1365 1366 1367
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1368 1369

            # fine-tune
1370 1371 1372
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1373 1374


1375
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1376 1377 1378 1379

        .. code-block:: python

            import numpy as np
1380
            import paddle
1381
            import paddle.static as static
1382 1383
            import paddle.nn as nn
            import paddle.optimizer as opt
1384
            import paddle.nn.functional as F
1385

1386 1387 1388
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1389

1390 1391 1392 1393 1394 1395 1396
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1397

1398 1399 1400 1401
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1402

1403 1404
                def __len__(self):
                    return self.num_samples
1405

1406 1407
            paddle.enable_static()

1408 1409
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1410
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1411 1412
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1413

1414
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1415 1416
            optimizer.minimize(avg_loss)

1417 1418 1419
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1420

1421 1422 1423 1424 1425
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1426
                batch_size=BATCH_SIZE,
1427 1428
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1429
                return_list=False,
1430
                num_workers=2)
1431 1432 1433 1434

            # 1. train and save inference model
            for data in loader():
                exe.run(
1435
                    static.default_main_program(),
1436
                    feed=data,
1437 1438 1439
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1440
            paddle.fluid.io.save_inference_model(
1441 1442 1443
                model_path, ["image"], [pred], exe)

            # 2. load model
1444 1445

            # enable dygraph mode
1446 1447 1448 1449
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1450

1451 1452 1453
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1454 1455
            pred = fc(x)

1456
            # fine-tune
1457
            fc.train()
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1475
    """
1476 1477 1478 1479
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1480
    return TranslatedLayer._construct(model_path, config)
1481 1482


1483
@dygraph_only
1484 1485 1486
def _trace(
    layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'
):
1487
    assert isinstance(layer, Layer)
1488 1489 1490 1491 1492 1493 1494 1495 1496

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1497
        original_outputs = layer(*inputs)
1498 1499 1500 1501
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1502
        out_vars = extract_vars(outputs, err_tag='outputs')
1503

1504 1505 1506 1507 1508 1509 1510 1511
        (
            program_desc,
            feed_names,
            fetch_names,
            parameters,
        ) = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix
        )
1512 1513 1514 1515 1516
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1517
    return original_outputs, program, feed_names, fetch_names, parameters
1518 1519


1520
class TracedLayer:
1521
    """
1522
    :api_attr: imperative
1523

1524 1525 1526 1527 1528
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1529 1530 1531 1532

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1533 1534

    All TracedLayer objects should not be created by constructor and should
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1546
        self._params = parameters
1547 1548 1549 1550 1551

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1552
            src_tensor = p.value().get_tensor()
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1576
        This method is the only allowed method to create TracedLayer object.
1577 1578 1579 1580
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1581
            layer (paddle.nn.Layer): the layer object to be traced.
1582 1583
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1584 1585

        Returns:
1586
            tuple: A tuple of 2 items, whose the first item is the output of
1587 1588
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1589

1590
        Examples:
1591 1592
            .. code-block:: python:

1593
                import paddle
1594

1595
                class ExampleLayer(paddle.nn.Layer):
1596
                    def __init__(self):
1597
                        super().__init__()
1598
                        self._fc = paddle.nn.Linear(3, 10)
1599 1600 1601 1602

                    def forward(self, input):
                        return self._fc(input)

1603

1604 1605 1606 1607 1608 1609
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1610

1611 1612
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1613

1614
                # save the static graph model for inference
1615
                static_layer.save_inference_model('./saved_infer_model')
1616

1617
        """
1618 1619
        assert isinstance(
            layer, Layer
1620
        ), "The type of 'layer' in paddle.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
1621 1622
            type(layer)
        )
1623 1624
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1625 1626 1627 1628 1629 1630 1631
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1632
            build_strategy (BuildStrategy, optional): build strategy of
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1643
                import paddle
1644

1645
                class ExampleLayer(paddle.nn.Layer):
1646
                    def __init__(self):
1647
                        super().__init__()
1648
                        self._fc = paddle.nn.Linear(3, 10)
1649 1650 1651 1652

                    def forward(self, input):
                        return self._fc(input)

1653 1654 1655 1656
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1657

1658 1659
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1660

1661 1662
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1663

1664 1665
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1666 1667 1668

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1669 1670
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
1671
        ), "The type of 'build_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
1672 1673
            type(build_strategy)
        )
1674 1675
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
1676
        ), "The type of 'exec_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
1677 1678
            type(exec_strategy)
        )
1679 1680 1681 1682 1683 1684
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
K
kangguangli 已提交
1685
            self._program,
1686 1687
            build_strategy=self._build_strategy,
        )
1688 1689

    def _build_feed(self, inputs):
1690 1691 1692
        assert isinstance(
            inputs, (list, tuple)
        ), "Inputs should be a list or tuple of variables"
1693 1694
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1695
        if _non_static_mode():
1696
            for x, name in zip(inputs, self._feed_names):
1697
                feed_dict[name] = x.value().get_tensor()
1698 1699 1700 1701 1702 1703 1704 1705
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
1706 1707 1708
        return self._exe.run(
            self._compiled_program, feed=feed, fetch_list=self._fetch_names
        )
1709 1710 1711 1712 1713 1714 1715 1716 1717

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1718
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1719
        """
1720 1721
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1722

1723 1724 1725
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1726
        Args:
1727
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1728
            feed (list[int], optional): the input variable indices of the saved
1729
                inference model. If None, all input variables of the
1730 1731 1732 1733 1734 1735
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1736
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1737 1738

        Returns:
1739
            None
1740 1741 1742 1743 1744

        Examples:
            .. code-block:: python:

                import numpy as np
1745
                import paddle
1746

1747
                class ExampleLayer(paddle.nn.Layer):
1748
                    def __init__(self):
1749
                        super().__init__()
1750
                        self._fc = paddle.nn.Linear(3, 10)
1751 1752 1753 1754

                    def forward(self, input):
                        return self._fc(input)

1755 1756
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1757 1758
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1759

1760 1761
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1762

1763 1764 1765 1766
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1767
                                                    exe)
1768 1769 1770

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1771
        """
1772 1773 1774 1775
        check_type(
            path,
            "path",
            str,
1776
            "paddle.jit.TracedLayer.save_inference_model",
1777 1778 1779 1780 1781
        )
        check_type(
            feed,
            "feed",
            (type(None), list),
1782
            "paddle.jit.TracedLayer.save_inference_model",
1783
        )
1784 1785
        if isinstance(feed, list):
            for f in feed:
1786
                check_type(
1787 1788 1789
                    f,
                    "each element of feed",
                    int,
1790
                    "paddle.jit.TracedLayer.save_inference_model",
1791 1792 1793 1794 1795
                )
        check_type(
            fetch,
            "fetch",
            (type(None), list),
1796
            "paddle.jit.TracedLayer.save_inference_model",
1797
        )
1798 1799
        if isinstance(fetch, list):
            for f in fetch:
1800
                check_type(
1801 1802 1803
                    f,
                    "each element of fetch",
                    int,
1804
                    "paddle.jit.TracedLayer.save_inference_model",
1805
                )
1806
        clip_extra = kwargs.get('clip_extra', True)
1807 1808 1809 1810 1811 1812
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
1813 1814
                "file_prefix is empty string."
            )
1815 1816 1817 1818 1819

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1820
        from paddle.fluid.io import save_inference_model
1821 1822 1823 1824 1825

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1826
            return [all_vars[idx] for idx in partial_vars]
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1837 1838 1839
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                clip_extra=clip_extra,
            )