mkldnn_reuse.h 18.7 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32 33

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = dnnl::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T,
          typename TForward,
38 39
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
40 41
using MKLDNNHandlerT =
    phi::funcs::OneDNNHandlerT<T, TForward, TBackward, TBackward_params>;
42

43 44
template <typename T,
          typename TForward,
45 46
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
47 48
using MKLDNNHandlerNoCachingT = phi::funcs::
    OneDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
49

50
template <typename T>
51
using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler<T>;
52

53
template <typename T>
54
using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler<T>;
55

56 57
template <typename T>
using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler<T>;
58

59
static void AppendActivation(const framework::ExecutionContext& ctx,
60
                             dnnl::post_ops& post_ops,  // NOLINT
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static void SetOutMemDescWithUnsqueeze2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  const std::vector<int>& fused_unsqueeze2_axes =
      ctx.Attr<std::vector<int>>("fused_unsqueeze2_axes");
  const std::vector<int64_t>& op_tz = out_md.dims();
  std::vector<int64_t> unsqueezed_op_tz(
      op_tz.size() + fused_unsqueeze2_axes.size(), 0);

  for (const auto& axis : fused_unsqueeze2_axes) {
    int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis;
    unsqueezed_op_tz[positive_axis] = 1;
  }

  int j = 0;
  for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) {
    if (unsqueezed_op_tz[i] == 0) {
      unsqueezed_op_tz[i] = op_tz[j++];
    }
  }
  out->set_mem_desc(out_md.reshape(unsqueezed_op_tz));
  out->Resize(phi::make_ddim(unsqueezed_op_tz));
}

static void SetOutMemDescWithReshape2FuseSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  std::vector<int64_t> fused_reshape2_shape(
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").begin(),
      ctx.Attr<std::vector<int>>("fused_reshape2_shape").end());

  const int out_shape_numel = out->numel();
  const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(),
                                              fused_reshape2_shape.end(),
                                              1,
                                              std::multiplies<int64_t>());

  for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) {
    if (fused_reshape2_shape[i] == -1) {
      fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel;
      break;
    }
  }

  out->set_mem_desc(out_md.reshape(fused_reshape2_shape));
  out->Resize(phi::make_ddim(fused_reshape2_shape));
}

static void SetOutMemDescWithLogicalLayoutFusesSupport(
    const framework::ExecutionContext& ctx,
    phi::DenseTensor* out,
    const dnnl::memory::desc& out_md) {
  if (ctx.HasAttr("fused_unsqueeze2_axes")) {
    SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md);
  } else if (ctx.HasAttr("fused_reshape2_shape")) {
    SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md);
  } else {
    out->set_mem_desc(out_md);
  }
}

175
template <typename T>
176 177 178 179 180 181 182 183 184 185
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
186
class MatMulV2MKLDNNHandler
187
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
188
 public:
189 190
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
191
                        paddle::platform::Place cpu_place,
192 193 194 195
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
196 197 198
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
199 200
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

260 261
    // TODO(jczaja): Why not for int8??
    if (!IsInt8<OT>() && is_output_fused) {
262 263 264
      out_strides = FakeTransposeStrides(out_ddims);
    }

265 266 267
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
268

269 270 271 272 273
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

289 290 291 292 293
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

294 295 296
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
297 298
    }

299
    if (ctx.HasInput("ResidualData")) {
300
      auto* residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
301 302
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
303 304
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
305 306
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
307 308 309 310
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
311 312
    }

313 314
    AppendActivation(ctx, post_operations);

315 316 317 318 319 320
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

321 322
    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

343
  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor* input) {
344
    const YT* input_data = input->data<YT>();
345
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
346 347 348
                                            to_void_cast<YT>(input_data));
  }

349
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output) {
350 351 352
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
353 354 355 356
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
357 358
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
359 360 361
  }
};

362 363 364
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
365
  if (act_type == "swish") {
366
    attr_map.emplace("beta", "fuse_alpha");
367
  } else if (act_type == "relu6") {
368
    attr_map.emplace("threshold", "fuse_alpha");
369
  } else if (act_type == "hard_sigmoid") {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
396 397
}

398
class ReorderMKLDNNHandler {
399
 public:
A
Adam 已提交
400
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
401
                       framework::proto::VarType::Type vtype,
402 403
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
404
      : dims_(dims),
405
        vtype_(vtype),
406 407
        vtype_dst_(vtype),
        dtype_(dtype),
408 409
        dtype_dst_(dtype),
        engine_(engine) {}
410 411 412

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
413
                       dnnl::memory::data_type dtype,
414
                       framework::proto::VarType::Type vtype_dst,
415 416
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
417
      : dims_(dims),
418 419 420
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
421 422
        dtype_dst_(dtype_dst),
        engine_(engine) {}
423

424 425 426 427 428
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

429 430 431 432
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
433 434
  }

435
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
436 437
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
438
      const std::shared_ptr<dnnl::memory>& mem_p) {
439
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
440 441
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
442 443 444
    return sub_mem_p;
  }

445
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output,
446 447
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
448
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
449
    auto dst_data = output->mutable_data(
450
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
451
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
452 453
  }

454
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
455
      phi::DenseTensor* output,
456
      const dnnl::memory::desc& src_md,
457 458 459 460 461 462 463 464 465 466 467 468 469 470
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

471
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
472
      phi::DenseTensor* output,
473 474 475
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
476
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
477
    auto dst_data = output->mutable_data(
478
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
479
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
480 481
  }

482 483 484 485
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
486 487
  }

488 489 490 491
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
492 493
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
494 495
  }

496
 private:
A
Adam 已提交
497
  std::vector<int64_t> dims_;
498
  framework::proto::VarType::Type vtype_, vtype_dst_;
499 500
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
501
};
J
Jacek Czaja 已提交
502 503
}  // namespace platform
}  // namespace paddle