Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c6c65c65
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c6c65c65
编写于
4月 22, 2020
作者:
J
Jacek Czaja
提交者:
GitHub
4月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[DNNL] Added elementwise_add mkl-dnn inplace (#23477)
上级
9ff558a4
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
259 addition
and
111 deletion
+259
-111
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-1
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+10
-10
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+2
-1
paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass.cc
paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass.cc
+106
-40
paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass_tester.cc
...e/fluid/framework/ir/mkldnn/mkldnn_inplace_pass_tester.cc
+18
-9
paddle/fluid/operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
...operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
+19
-24
paddle/fluid/operators/mkldnn/inplace_op_tests.cmake
paddle/fluid/operators/mkldnn/inplace_op_tests.cmake
+1
-1
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+6
-5
paddle/fluid/operators/mkldnn/test_mkldnn_op_inplace.cc
paddle/fluid/operators/mkldnn/test_mkldnn_op_inplace.cc
+58
-17
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+5
-0
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+33
-3
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
c6c65c65
...
...
@@ -86,7 +86,7 @@ endif()
if
(
WITH_MKLDNN
)
pass_library
(
mkldnn_placement_pass base DEPS placement_pass_base DIR mkldnn
)
pass_library
(
mkldnn_inplace_pass inference DEPS mkldnn_placement_pass op_registry softmax_op softmax DIR mkldnn
)
pass_library
(
mkldnn_inplace_pass inference DEPS mkldnn_placement_pass op_registry
elementwise_add_op activation_op
softmax_op softmax DIR mkldnn
)
pass_library
(
depthwise_conv_mkldnn_pass base DIR mkldnn
)
pass_library
(
conv_bias_mkldnn_fuse_pass inference DIR mkldnn
)
pass_library
(
conv_activation_mkldnn_fuse_pass inference DIR mkldnn
)
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
c6c65c65
...
...
@@ -1892,30 +1892,30 @@ PDNode *patterns::MultipleQuantize::operator()() {
}
PDNode
*
patterns
::
MKLDNNInPlace
::
operator
()()
{
// TODO(jczaja): Enable more mkl-dnn ops e.g. activation, elementwise_add,
// batch_norm....
auto
possible_inplace_op
=
pattern
->
NewNode
(
inplace_to_be_op_repr
())
->
assert_is_ops
({
"softmax"
});
pattern
->
NewNode
(
inplace_to_be_op_repr
())
->
assert_is_ops
({
"elementwise_add"
,
"softmax"
});
// TODO(jczaja): Enable more mkl-dnn ops e.g. activation, elementwise_add,
// batch_norm....
// TODO(jczaja): Enable more mkl-dnn ops e.g. activation, batch_norm....
auto
input
=
pattern
->
NewNode
(
inplace_to_be_op_in_repr
())
->
assert_is_ops_input
({
"softmax"
})
->
assert_is_ops_input
({
"
elementwise_add"
,
"
softmax"
})
->
AsInput
();
// TODO(jczaja): Enable more mkl-dnn ops e.g. activation, elementwise_add,
// batch_norm....
// TODO(jczaja): Enable more mkl-dnn ops e.g. activation, batch_norm....
auto
output
=
pattern
->
NewNode
(
inplace_to_be_op_out_repr
())
->
assert_is_ops_output
({
"softmax"
})
->
As
Intermediate
();
->
assert_is_ops_output
({
"
elementwise_add"
,
"
softmax"
})
->
As
Output
();
auto
next_op
=
pattern
->
NewNode
(
next_op_repr
())
->
assert_is_op
();
auto
next_output
=
pattern
->
NewNode
(
next_op_out_repr
())
->
AsOutput
();
// Check if op is MKL-DNN enabled
possible_inplace_op
->
assert_op_attr
(
"use_mkldnn"
,
true
);
// linked structure
possible_inplace_op
->
LinksTo
({
output
});
possible_inplace_op
->
LinksFrom
({
input
});
next_op
->
LinksFrom
({
output
});
next_op
->
LinksTo
({
next_output
});
return
possible_inplace_op
;
}
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
c6c65c65
...
...
@@ -1140,11 +1140,12 @@ struct MKLDNNInPlace : public PatternBase {
:
PatternBase
(
pattern
,
name_scope
,
"mkldnn_inplace"
)
{}
PDNode
*
operator
()();
// MKL-DNN's in-place ops: BatchNorm, Softmax,
Layer Norm
// MKL-DNN's in-place ops: BatchNorm, Softmax,
Elementwise_add
PATTERN_DECL_NODE
(
inplace_to_be_op
);
PATTERN_DECL_NODE
(
inplace_to_be_op_in
);
PATTERN_DECL_NODE
(
inplace_to_be_op_out
);
PATTERN_DECL_NODE
(
next_op
);
PATTERN_DECL_NODE
(
next_op_out
);
};
struct
TransposeFlattenConcat
:
public
PatternBase
{
...
...
paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass.cc
浏览文件 @
c6c65c65
...
...
@@ -16,6 +16,7 @@
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
...
...
@@ -30,6 +31,7 @@ void MKLDNNInPlacePass::ApplyImpl(ir::Graph* graph) const {
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Pointer to graph argument should not be NULL."
));
std
::
unordered_map
<
std
::
string
,
std
::
string
>
original_output_names
;
GraphPatternDetector
gpd
;
patterns
::
MKLDNNInPlace
mkldnn_inplace
{
gpd
.
mutable_pattern
(),
"mkldnn_inplace"
};
...
...
@@ -40,72 +42,136 @@ void MKLDNNInPlacePass::ApplyImpl(ir::Graph* graph) const {
Graph
*
g
)
{
VLOG
(
3
)
<<
"Start to handle MKL-DNN In-Place pass"
;
GET_IR_NODE_FROM_SUBGRAPH
(
inplace_to_be_op
,
inplace_to_be_op
,
GET_IR_NODE_FROM_SUBGRAPH
(
current_op
,
inplace_to_be_op
,
mkldnn_inplace
);
GET_IR_NODE_FROM_SUBGRAPH
(
current_op_in
,
inplace_to_be_op_in
,
mkldnn_inplace
);
GET_IR_NODE_FROM_SUBGRAPH
(
inplace_to_be_op_in
,
inplace_to_be_op_in
,
mkldnn_inplace
);
GET_IR_NODE_FROM_SUBGRAPH
(
inplace_to_be_op_out
,
inplace_to_be_op_out
,
GET_IR_NODE_FROM_SUBGRAPH
(
current_op_out
,
inplace_to_be_op_out
,
mkldnn_inplace
);
GET_IR_NODE_FROM_SUBGRAPH
(
next_op
,
next_op
,
mkldnn_inplace
);
GET_IR_NODE_FROM_SUBGRAPH
(
next_op_out
,
next_op_out
,
mkldnn_inplace
);
if
((
inplace_to_be_op
->
Op
()
->
HasAttr
(
"use_mkldnn"
)
==
false
)
||
(
boost
::
get
<
bool
>
(
inplace_to_be_op
->
Op
()
->
GetAttr
(
"use_mkldnn"
))
==
false
))
{
if
((
current_op
->
Op
()
->
HasAttr
(
"use_mkldnn"
)
==
false
)
||
(
boost
::
get
<
bool
>
(
current_op
->
Op
()
->
GetAttr
(
"use_mkldnn"
))
==
false
))
{
VLOG
(
3
)
<<
"do not perform mkl-dnn inplace: use_mkldnn missing or set to "
"false"
;
return
;
}
auto
&
infer_inplace
=
OpInfoMap
::
Instance
()
.
Get
(
inplace_to_be_op
->
Op
()
->
Type
())
.
infer_inplace_
;
auto
&
infer_inplace
=
OpInfoMap
::
Instance
().
Get
(
current_op
->
Op
()
->
Type
()).
infer_inplace_
;
if
(
!
infer_inplace
)
{
VLOG
(
3
)
<<
"do not perform mkl-dnn inplace: missing InplaceInferer"
;
return
;
}
// TODO(jczaja): Enable more ops
if
(
inplace_to_be_op
->
Op
()
->
Type
()
!=
"softmax"
)
{
VLOG
(
3
)
<<
"Curently works for softmax only. TODO(jczaja): support other ops"
;
VLOG
(
3
)
<<
"DNNL Inplace op("
<<
current_op
->
id
()
<<
") "
<<
"Curr Node In: "
<<
current_op_in
->
Name
()
<<
" Curr Node out: "
<<
current_op_out
->
Name
();
VLOG
(
3
)
<<
"DNNL Inplace next op("
<<
next_op
->
id
()
<<
") "
<<
" next Node out: "
<<
next_op_out
->
Name
();
auto
inputs
=
current_op
->
Op
()
->
Inputs
();
auto
outputs
=
current_op
->
Op
()
->
Outputs
();
auto
in_to_outs
=
infer_inplace
(
false
);
// strictly no CUDA for MKL-DNN
VLOG
(
3
)
<<
"DNNL InplaceInferer op("
<<
current_op
->
id
()
<<
") "
<<
in_to_outs
.
begin
()
->
first
<<
": "
<<
inputs
[
in_to_outs
.
begin
()
->
first
][
0
]
<<
" "
<<
in_to_outs
.
begin
()
->
second
<<
": "
<<
outputs
[
in_to_outs
.
begin
()
->
second
][
0
];
// If InferInplace pattern does not contain input node then skip
auto
inplace_input_vec
=
inputs
[
in_to_outs
.
begin
()
->
first
];
if
(
std
::
find
(
inplace_input_vec
.
begin
(),
inplace_input_vec
.
end
(),
current_op_in
->
Name
())
==
inplace_input_vec
.
end
())
{
VLOG
(
3
)
<<
"DNNL in-place pass SKIP pattern "
;
return
;
}
// Iterate over all nodes that are ops
// and check if in-place to be var is part of inputs
// if positive then do not perform inplace
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
())
{
// Avoid searchin in op that is to be inplace
if
((
n
->
id
()
!=
inplace_to_be_op
->
id
()))
{
auto
*
op
=
n
->
Op
();
auto
inputs
=
op
->
Inputs
();
auto
in_place_input
=
inplace_to_be_op_in
->
Name
();
for
(
auto
&
it
:
inputs
)
{
for
(
auto
&
var_name
:
it
.
second
)
{
if
(
var_name
==
in_place_input
)
{
VLOG
(
3
)
<<
"MKL-DNN in-place pass: in-place var cannot be an "
"input to more than one operator"
;
return
;
}
}
// Checking if this particular node (to be inplaced, overwritten)
// is used anywhere else apart from inplaced op
auto
input_consumers
=
current_op_in
->
outputs
;
if
(
input_consumers
.
size
()
>
1
)
{
VLOG
(
3
)
<<
"DNNL in-place pass FAIL: in-place var cannot "
"be an input to multiple operators"
;
return
;
}
// If this op was alrady inplaced in previous pass placements
// then we need to update input of next op
// but original name to be changed is gone, so we need to remember it
// on first time given op is to be inplaced
if
(
current_op_in
->
Name
()
!=
current_op_out
->
Name
())
{
original_output_names
[
current_op
->
Name
()
+
current_op_in
->
Name
()]
=
current_op_out
->
Name
();
}
else
{
VLOG
(
3
)
<<
"DNNL Inplace: Current op already inplaced! "
;
}
// It may be that next op is reusing some of vars, we need to
// make sure that unwanted inplace is not created
// TODO(jczaja): Make UT for that one
for
(
auto
&
n
:
current_op_out
->
outputs
)
{
auto
&
n_op_infer_inplace
=
OpInfoMap
::
Instance
().
Get
(
n
->
Op
()
->
Type
()).
infer_inplace_
;
if
((
n_op_infer_inplace
==
nullptr
))
{
for
(
auto
&
m
:
n
->
outputs
)
{
if
(
m
->
Name
()
==
current_op_in
->
Name
())
{
VLOG
(
3
)
<<
"DNNL in-place pass FAIL: in-place var cannot "
"be an output to non-inplaced next op"
;
return
;
}
}
}
}
auto
original_name
=
inplace_to_be_op_out
->
Name
();
inplace_to_be_op_out
->
RenameVar
(
inplace_to_be_op_in
->
Name
());
auto
original_name
=
original_output_names
[
current_op
->
Name
()
+
current_op_in
->
Name
()];
current_op_out
->
RenameVar
(
current_op_in
->
Name
());
// Get mapping of input to output
auto
in_to_outs
=
infer_inplace
(
false
);
// strictly no CUDA for MKL-DNN
// TODO(jczaja): Support more complex situations
auto
out_name
=
in_to_outs
.
begin
()
->
second
;
inplace_to_be_op
->
Op
()
->
SetOutput
(
out_name
,
std
::
vector
<
std
::
string
>
({
inplace_to_be_op_out
->
Name
()}));
next_op
->
Op
()
->
RenameInput
(
original_name
,
inplace_to_be_op_out
->
Name
());
current_op
->
Op
()
->
SetOutput
(
out_name
,
std
::
vector
<
std
::
string
>
({
current_op_out
->
Name
()}));
// If next op in a line is doing inplace
// then we need to update its output as well
// Get inferer of next op
// If no inferer then we are done
auto
&
next_op_infer_inplace
=
OpInfoMap
::
Instance
().
Get
(
next_op
->
Op
()
->
Type
()).
infer_inplace_
;
if
(
next_op_infer_inplace
)
{
auto
in_to_outs
=
next_op_infer_inplace
(
false
);
auto
out_name
=
in_to_outs
.
begin
()
->
second
;
auto
*
op
=
next_op
->
Op
();
auto
inputs
=
op
->
Inputs
();
auto
outputs
=
op
->
Outputs
();
// Check if in-place happened
// for variable we changed (original name)
// TODO(jczaja): make recursive propagation of inplace
auto
next_op_inplace_inputs
=
inputs
[
in_to_outs
.
begin
()
->
first
];
if
((
next_op_inplace_inputs
==
outputs
[
in_to_outs
.
begin
()
->
second
])
&&
(
std
::
find
(
next_op_inplace_inputs
.
begin
(),
next_op_inplace_inputs
.
end
(),
original_name
)
!=
next_op_inplace_inputs
.
end
()))
{
VLOG
(
3
)
<<
"DNNL InPlace: Next Op is in-placed , updating its "
"input "
"and output var!"
;
next_op
->
Op
()
->
SetOutput
(
out_name
,
std
::
vector
<
std
::
string
>
({
current_op_out
->
Name
()}));
next_op_out
->
RenameVar
(
current_op_in
->
Name
());
// Get ops that next_op_out is linked to and update their input
auto
next_op_out_consumers
=
next_op_out
->
outputs
;
// Has to be ops
for
(
auto
&
c
:
next_op_out_consumers
)
{
c
->
Op
()
->
RenameInput
(
original_name
,
current_op_out
->
Name
());
}
}
}
next_op
->
Op
()
->
RenameInput
(
original_name
,
current_op_out
->
Name
());
found_inplace_count
++
;
VLOG
(
3
)
<<
"
MKL-DNN
InPlace applied!"
;
VLOG
(
3
)
<<
"
DNNL
InPlace applied!"
;
};
gpd
(
graph
,
handler
);
...
...
paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass_tester.cc
浏览文件 @
c6c65c65
...
...
@@ -21,6 +21,9 @@
USE_OP
(
softmax
);
USE_OP_DEVICE_KERNEL
(
softmax
,
MKLDNN
);
USE_OP
(
elementwise_add
);
USE_OP_DEVICE_KERNEL
(
elementwise_add
,
MKLDNN
);
USE_OP
(
relu
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -62,8 +65,9 @@ class MKLDNNInplacePassTest {
bool
branched
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
(
{
"a"
,
"weights"
,
"bias"
,
"f"
,
"g"
,
"h"
,
"i"
,
"j"
,
"k"
}))
{
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"weights"
,
"bias"
,
"f"
,
"g"
,
"h"
,
"i"
,
"j"
,
"k"
,
"l"
,
"m"
,
"z"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
var
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
if
(
v
==
"weights"
||
v
==
"bias"
)
{
...
...
@@ -83,9 +87,12 @@ class MKLDNNInplacePassTest {
SetOp
(
&
prog
,
"elementwise_add"
,
"elementwise_add1"
,
std
::
vector
<
std
::
string
>
({
"h"
,
"i"
}),
std
::
vector
<
std
::
string
>
({
"j"
}),
mkldnn_enabled_op
.
compare
(
"elementwise_add"
)
==
0
);
SetOp
(
&
prog
,
"relu"
,
"relu2"
,
std
::
vector
<
std
::
string
>
({
"j"
}),
std
::
vector
<
std
::
string
>
({
"k"
}),
mkldnn_enabled_op
.
compare
(
"softmax"
)
==
0
);
if
(
branched
==
true
)
{
SetOp
(
&
prog
,
"softmax"
,
"softmax2"
,
std
::
vector
<
std
::
string
>
({
"g"
}),
std
::
vector
<
std
::
string
>
({
"
k
"
}),
std
::
vector
<
std
::
string
>
({
"
z
"
}),
mkldnn_enabled_op
.
compare
(
"softmax"
)
==
0
);
}
...
...
@@ -105,12 +112,11 @@ class MKLDNNInplacePassTest {
unsigned
use_mkldnn_true_count
=
0
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>
input_names
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>
output_names
;
input_names
[
"softmax"
]
=
"X"
;
output_names
[
"softmax"
]
=
"Out"
;
input_names
[
"batch_norm"
]
=
"X"
;
output_names
[
"batch_norm"
]
=
"Y"
;
input_names
[
"layer_norm"
]
=
"X"
;
output_names
[
"layer_norm"
]
=
"Y"
;
input_names
[
"elementwise_add"
]
=
"X"
;
output_names
[
"elementwise_add"
]
=
"Out"
;
VLOG
(
3
)
<<
DebugString
(
graph
);
...
...
@@ -135,15 +141,18 @@ class MKLDNNInplacePassTest {
TEST
(
MKLDNNInplacePass
,
inplace_softmax
)
{
// softmax to be mkl-dnn enabled and made in-place
MKLDNNInplacePassTest
().
MainTest
(
"softmax"
,
false
,
1
);
}
TEST
(
MKLDNNInplacePass
,
inplace_softmax_branched
)
{
// softmax
to be mkl-dnn enabled and made
in-place
// softmax
's input is shared by two branches. so no
in-place
MKLDNNInplacePassTest
().
MainTest
(
"softmax"
,
true
,
0
);
}
TEST
(
MKLDNNInplacePass
,
inplace_elementwise_add
)
{
// Two elementwise_add mkl-dnn enabled op instances to be made inplace
MKLDNNInplacePassTest
().
MainTest
(
"elementwise_add"
,
false
,
1
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
浏览文件 @
c6c65c65
...
...
@@ -56,39 +56,34 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
y
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Y tensor"
));
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
y_data
=
y
->
data
<
T
>
();
auto
src_x_tz
=
framework
::
vectorize
<
int64_t
>
(
x
->
dims
());
auto
src_y_tz
=
framework
::
vectorize
<
int64_t
>
(
y
->
dims
());
auto
dst_tz
=
framework
::
vectorize
<
int64_t
>
(
z
->
dims
());
std
::
vector
<
float
>
scales
=
{
1.0
f
,
1.0
f
};
// Currently MKL-DNN kernel supports only Z <- X + Y, shape(X) == shape(Y)
// TODO(jczaja): Binary primitive support broadcasting, so we can support
// this in kernel
platform
::
BinaryMKLDNNHandler
<
T
>
handler
(
dnnl
::
algorithm
::
binary_add
,
src_x_tz
,
x
->
format
(),
y
->
format
(),
dev_ctx
,
ctx
.
GetPlace
(),
ctx
.
OutputName
(
"Out"
));
const
std
::
string
key
=
platform
::
CreateKey
(
src_x_tz
,
ctx
.
OutputName
(
"Out"
)
);
auto
src_x_memory
=
handler
.
AcquireSrcMemory
(
x
);
auto
src_y_memory
=
handler
.
AcquireSecondSrcMemory
(
y
);
platform
::
SumMKLDNNHandler
handler
(
dev_ctx
,
mkldnn_engine
,
key
);
// For Inplace src and and dst are the same memory object
auto
dst_memory
=
x
->
IsSharedBufferWith
(
*
z
)
?
src_x_memory
:
handler
.
AcquireDstMemory
(
z
);
auto
src_x_memory
=
handler
.
AcquireSrcMemory
(
{{
src_x_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
()},
paddle
::
platform
::
to_void_cast
(
x_data
));
auto
src_y_memory
=
handler
.
AcquireSecondSrcMemory
(
{{
src_y_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
y
->
format
()},
paddle
::
platform
::
to_void_cast
(
y_data
));
auto
dst_md
=
memory
::
desc
({
dst_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
auto
sum_pd
=
handler
.
AcquireSumPrimitiveDescriptor
(
{
src_x_memory
,
src_y_memory
},
scales
,
dst_md
);
T
*
z_data
=
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
sum_pd
->
dst_desc
().
get_size
());
auto
dst_memory
=
handler
.
AcquireDstMemoryFromPrimitive
(
z_data
);
auto
sum_prim
=
handler
.
AcquireSum
();
auto
binary_prim
=
handler
.
AcquireForwardPrimitive
();
mkldnn
::
stream
astream
(
mkldnn_engine
);
sum_prim
->
execute
(
astream
,
{{
MKLDNN_ARG_MULTIPLE_SRC
,
*
src_x_memory
},
{
MKLDNN_ARG_MULTIPLE_SRC
+
1
,
*
src_y_memory
},
{
MKLDNN_ARG_DST
,
*
dst_memory
}});
std
::
unordered_map
<
int
,
dnnl
::
memory
>
args
=
{
{
DNNL_ARG_SRC_0
,
*
src_x_memory
},
{
DNNL_ARG_SRC_1
,
*
src_y_memory
},
{
DNNL_ARG_DST
,
*
dst_memory
}};
binary_prim
->
execute
(
astream
,
args
);
astream
.
wait
();
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
...
...
paddle/fluid/operators/mkldnn/inplace_op_tests.cmake
浏览文件 @
c6c65c65
cc_test
(
test_mkldnn_op_inplace SRCS mkldnn/test_mkldnn_op_inplace.cc DEPS op_registry softmax_op softmax scope device_context enforce executor
)
cc_test
(
test_mkldnn_op_inplace SRCS mkldnn/test_mkldnn_op_inplace.cc DEPS op_registry
elementwise_add_op
softmax_op softmax scope device_context enforce executor
)
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
c6c65c65
...
...
@@ -45,7 +45,8 @@ class SoftmaxMKLDNNHandler
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dims
,
uniq_name
))
{
// Softmax may be inplace then uniq_name is no longer unique
platform
::
CreateKey
(
dims
,
axis
,
uniq_name
))
{
auto
md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
md
,
...
...
@@ -60,7 +61,7 @@ class SoftmaxMKLDNNHandler
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dims
,
uniq_name
))
{
platform
::
CreateKey
(
dims
,
axis
,
uniq_name
))
{
auto
data_softmax_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
auto
diff_softmax_md
=
...
...
@@ -95,13 +96,13 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
auto
softmax_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
);
auto
softmax_p
=
handler
.
AcquireForwardPrimitive
();
// For Inplace src and and dst are the same memory object
auto
softmax_dst_memory_p
=
input
->
Holder
()
==
output
->
Holder
(
)
auto
softmax_dst_memory_p
=
input
->
IsSharedBufferWith
(
*
output
)
?
softmax_src_memory_p
:
handler
.
AcquireDstMemory
(
output
);
mkldnn
::
stream
astream
(
dev_ctx
.
GetEngine
());
softmax_p
->
execute
(
astream
,
{{
MKLDNN
_ARG_SRC
,
*
softmax_src_memory_p
},
{
MKLDNN
_ARG_DST
,
*
softmax_dst_memory_p
}});
softmax_p
->
execute
(
astream
,
{{
DNNL
_ARG_SRC
,
*
softmax_src_memory_p
},
{
DNNL
_ARG_DST
,
*
softmax_dst_memory_p
}});
astream
.
wait
();
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
...
paddle/fluid/operators/mkldnn/test_mkldnn_op_inplace.cc
浏览文件 @
c6c65c65
...
...
@@ -27,38 +27,68 @@
USE_OP
(
softmax
);
USE_OP_DEVICE_KERNEL
(
softmax
,
MKLDNN
);
USE_OP
(
elementwise_add
);
USE_OP_DEVICE_KERNEL
(
elementwise_add
,
MKLDNN
);
namespace
paddle
{
namespace
operators
{
struct
InputVars
{
std
::
string
name
;
framework
::
LoDTensor
*
tensor
;
};
template
<
typename
T
>
bool
TestMain
(
const
platform
::
Place
&
place
,
const
framework
::
DDim
&
dims
)
{
bool
TestMain
(
const
platform
::
Place
&
place
,
const
std
::
string
&
op_type
,
const
framework
::
DDim
&
dims
,
const
int
num_inputs
)
{
framework
::
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"x"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
y
=
scope
.
Var
(
"y"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
x
->
Resize
(
dims
);
y
->
Resize
(
dims
);
size_t
numel
=
static_cast
<
size_t
>
(
framework
::
product
(
dims
));
auto
x_ptr
=
x
->
mutable_data
<
T
>
(
place
);
auto
y_ptr
=
y
->
mutable_data
<
T
>
(
place
);
std
::
vector
<
InputVars
>
input_names
=
{
{
"x"
,
scope
.
Var
(
"x"
)
->
GetMutable
<
framework
::
LoDTensor
>
()},
{
"x1"
,
num_inputs
>
1
?
scope
.
Var
(
"x1"
)
->
GetMutable
<
framework
::
LoDTensor
>
()
:
nullptr
},
{
"x2"
,
num_inputs
>
2
?
scope
.
Var
(
"x2"
)
->
GetMutable
<
framework
::
LoDTensor
>
()
:
nullptr
},
{
"x3"
,
num_inputs
>
3
?
scope
.
Var
(
"x3"
)
->
GetMutable
<
framework
::
LoDTensor
>
()
:
nullptr
},
{
"x4"
,
num_inputs
>
4
?
scope
.
Var
(
"x4"
)
->
GetMutable
<
framework
::
LoDTensor
>
()
:
nullptr
}};
auto
*
y
=
scope
.
Var
(
"y"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
// Initialize input data
std
::
uniform_real_distribution
<
T
>
dist
(
static_cast
<
T
>
(
10.0
),
static_cast
<
T
>
(
20.0
));
std
::
mt19937
engine
;
size_t
numel
=
static_cast
<
size_t
>
(
framework
::
product
(
dims
));
for
(
int
i
=
0
;
i
<
num_inputs
;
++
i
)
{
input_names
[
i
].
tensor
->
Resize
(
dims
);
auto
data_ptr
=
input_names
[
i
].
tensor
->
mutable_data
<
T
>
(
place
);
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
data_ptr
[
i
]
=
dist
(
engine
);
}
}
// Initialize output
y
->
Resize
(
dims
);
auto
y_ptr
=
y
->
mutable_data
<
T
>
(
place
);
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
x_ptr
[
i
]
=
dist
(
engine
);
y_ptr
[
i
]
=
static_cast
<
T
>
(
0
);
}
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
// Out of place (reference) computation
auto
op_ref
=
framework
::
OpRegistry
::
CreateOp
(
"softmax"
,
{{
"X"
,
{
"x"
}}},
{{
"Out"
,
{
"y"
}}},
{{
"use_mkldnn"
,
{
true
}}});
auto
op_ref
=
num_inputs
>
1
?
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"x1"
}}},
{{
"Out"
,
{
"y"
}}},
{{
"use_mkldnn"
,
{
true
}}})
:
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
"x"
}}},
{{
"Out"
,
{
"y"
}}},
{{
"use_mkldnn"
,
{
true
}}});
op_ref
->
Run
(
scope
,
place
);
pool
.
Get
(
place
)
->
Wait
();
...
...
@@ -66,15 +96,20 @@ bool TestMain(const platform::Place &place, const framework::DDim &dims) {
auto
&
ref_tensor
=
scope
.
FindVar
(
"y"
)
->
Get
<
framework
::
LoDTensor
>
();
// In-place (to be tested) computation
auto
op
=
framework
::
OpRegistry
::
CreateOp
(
"softmax"
,
{{
"X"
,
{
"x"
}}},
{{
"Out"
,
{
"x"
}}},
{{
"use_mkldnn"
,
{
true
}}});
auto
op
=
num_inputs
>
1
?
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"x1"
}}},
{{
"Out"
,
{
"x"
}}},
{{
"use_mkldnn"
,
{
true
}}})
:
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
"x"
}}},
{{
"Out"
,
{
"x"
}}},
{{
"use_mkldnn"
,
{
true
}}});
op
->
Run
(
scope
,
place
);
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
)
->
Wait
();
// Get in-place result
auto
&
out_tensor
=
scope
.
FindVar
(
"x"
)
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
&
out_tensor
,
x
,
&
out_tensor
,
input_names
[
0
].
tensor
,
platform
::
errors
::
InvalidArgument
(
"Input and output vars should share tensor for In-place test"
));
...
...
@@ -88,7 +123,13 @@ bool TestMain(const platform::Place &place, const framework::DDim &dims) {
TEST
(
test_softmax_inplace
,
cpu_place
)
{
framework
::
DDim
dims
({
32
,
64
});
platform
::
CPUPlace
p
;
ASSERT_TRUE
(
TestMain
<
float
>
(
p
,
dims
));
ASSERT_TRUE
(
TestMain
<
float
>
(
p
,
"softmax"
,
dims
,
1
));
}
TEST
(
test_elementwise_add_inplace
,
cpu_place
)
{
framework
::
DDim
dims
({
1
,
12
,
20
,
20
});
platform
::
CPUPlace
p
;
ASSERT_TRUE
(
TestMain
<
float
>
(
p
,
"elementwise_add"
,
dims
,
2
));
}
}
// namespace operators
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
c6c65c65
...
...
@@ -101,6 +101,11 @@ inline void MatchShapeToLayout(framework::Tensor* tensor_in,
}
}
struct
mkldnn_dummy_primitive
{
struct
primitive_desc
{};
struct
desc
{};
};
inline
mkldnn
::
memory
::
desc
MKLDNNMemDesc
(
const
std
::
vector
<
int64_t
>&
dims
,
mkldnn
::
memory
::
data_type
data_type
,
MKLDNNMemoryFormat
format
)
{
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
c6c65c65
...
...
@@ -30,7 +30,8 @@ namespace platform {
using
user_function
=
std
::
function
<
std
::
shared_ptr
<
float
>
(
const
float
*
)
>
;
using
memory
=
mkldnn
::
memory
;
template
<
typename
T
,
typename
TForward
,
typename
TBackward
>
template
<
typename
T
,
typename
TForward
,
typename
TBackward
=
mkldnn_dummy_primitive
>
class
MKLDNNHandlerT
{
public:
MKLDNNHandlerT
(
const
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
...
...
@@ -351,6 +352,35 @@ class MKLDNNHandler {
std
::
string
key_common_
;
};
template
<
typename
T
>
class
BinaryMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
binary
>
{
public:
BinaryMKLDNNHandler
(
const
dnnl
::
algorithm
algo
,
const
std
::
vector
<
int64_t
>&
dims
,
const
MKLDNNMemoryFormat
src0_fmt
,
const
MKLDNNMemoryFormat
src1_fmt
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
std
::
string
&
uniq_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
binary
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dims
,
uniq_name
))
{
// TODO(jczaja): Add function checking if data already exists
auto
src0_md
=
dnnl
::
memory
::
desc
(
dims
,
MKLDNNGetDataType
<
T
>
(),
src0_fmt
);
auto
src1_md
=
dnnl
::
memory
::
desc
(
dims
,
MKLDNNGetDataType
<
T
>
(),
src1_fmt
);
auto
dst_md
=
memory
::
desc
(
dims
,
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
algo
,
src0_md
,
src1_md
,
dst_md
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSecondSrcMemory
(
const
framework
::
Tensor
*
input
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
src_desc
(),
to_void_cast
<
T
>
(
input_data
),
"@src1_mem_p"
);
}
};
class
SumMKLDNNHandler
:
public
MKLDNNHandler
{
public:
SumMKLDNNHandler
(
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
...
...
@@ -419,7 +449,7 @@ class ActivationMKLDNNHandler
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dims
,
unique_name
))
{
platform
::
CreateKey
(
dims
,
"a"
,
algorithm
,
unique_name
))
{
auto
md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
this
->
AcquireForwardPrimitiveDescriptor
(
mkldnn
::
prop_kind
::
forward_training
,
...
...
@@ -437,7 +467,7 @@ class ActivationMKLDNNHandler
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dims
,
unique_name
))
{
platform
::
CreateKey
(
dims
,
"a"
,
algorithm
,
unique_name
))
{
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_fmt
);
auto
src_md
=
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录