mkldnn_reuse.h 43.1 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/kernels/funcs/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = dnnl::memory;
J
Jacek Czaja 已提交
37

38 39
template <typename T,
          typename TForward,
40 41
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
42 43
using MKLDNNHandlerNoCachingT = phi::funcs::
    MKLDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
44

45 46
template <typename T,
          typename TForward,
47 48
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
49 50
class MKLDNNHandlerT {
 public:
51 52 53 54
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx,
                 dnnl::engine engine,
                 platform::Place cpu_place,
                 const std::string& base_key)
55 56 57 58
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
59
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
60
        fwd_pd_(nullptr),
61 62 63
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
64

A
Adam 已提交
65
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
66
    const std::string key_p = key_ + "@fwd_p";
67 68 69
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
70
      forward_p = std::make_shared<TForward>(*fwd_pd_);
71 72 73 74 75
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
76
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
77
    const std::string key_p = key_ + "@bwd_p";
78 79 80
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
81
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
82 83 84 85 86
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

87 88 89 90 91
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
92 93 94 95 96
      PADDLE_ENFORCE_NOT_NULL(
          bwd_w_pd_,
          platform::errors::Unavailable("BWD_PD should be set when "
                                        "getting BWD prim witk key: %s .",
                                        key_p));
97 98 99 100 101 102
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

103
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
104 105
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
106 107
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
108 109
  }

110
  template <typename T_out = T>
111
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
112 113
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
114 115
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->dst_desc(), ptr, "@dst_mem_p");
116 117
  }

118
  template <typename T_out = T>
119
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
120 121 122
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

123
  template <typename T_out = T>
124
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
125
      const framework::Tensor* output) {
126 127 128 129
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
130 131
  }

132
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
133 134
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
135 136
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
137 138
  }

139
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
140
      framework::Tensor* diffsrc) {
A
Adam 已提交
141 142
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
143 144
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p");
145 146
  }

147
  // Buffer of given Tensor is used for oneDNN computation
148
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
149 150 151 152
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
153
            "BWD_W_PD should be set when getting BWD grad of weights."));
154 155
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
156 157
    return this->AcquireMemoryFromPrimitive(
        bwd_w_pd_->diff_weights_desc(), ptr, "@diff_wei_mem_p");
158 159 160
  }

  // Buffer is allocated by oneDNN to store computation results
161
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
162 163 164
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
165
            "BWD_W_PD should be set when getting BWD grad of weights."));
166 167 168 169
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

170
 protected:
171
  bool isCached() {
172 173 174 175 176 177 178
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

179
  bool isBwdCached() {
180
    const std::string key_pd = key_ + "@bwd_pd";
181 182 183
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

184 185 186
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
187 188 189 190 191 192 193 194
      if (std::is_same<TBackward_params, mkldnn_dummy_primitive>::value ==
          false) {
        const std::string key_bw_w_pd = key_ + "@bwd_w_pd";
        bwd_w_pd_ =
            std::static_pointer_cast<typename TBackward_params::primitive_desc>(
                dev_ctx_.GetBlob(key_bw_w_pd));
      }

195 196 197 198 199
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
200 201 202
          fwd_pd_,
          platform::errors::Unavailable(
              "Error: FWD PD should be set when BWD PD is cached."));
203 204
      return true;
    }
205 206
  }

207 208 209 210 211 212
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
213 214 215 216 217 218 219 220 221 222 223
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

245 246
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
247
    // fwd_pd_ is set during grad by calling
248
    // AcquireForwardPrimitiveDescriptor
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

264
  template <typename... Args>
265
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
266
    // fwd_pd_ is set during grad by calling
267
    // AcquireForwardPrimitiveDescriptor
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

285
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
286
      const std::string& suffix) {
287
    return std::static_pointer_cast<dnnl::memory>(
288 289 290
        dev_ctx_.GetBlob(key_ + suffix));
  }

291 292
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr, const std::string& suffix) {
293
    const auto local_key = key_ + suffix;
294
    auto mem_p =
295
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
296
    if (mem_p == nullptr) {
297
      mem_p = std::make_shared<dnnl::memory>(md, engine_, ptr);
298 299 300 301 302 303 304
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

305 306
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, const std::string& suffix) {
307 308
    const auto local_key = key_ + suffix;
    auto mem_p =
309
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
310
    if (mem_p == nullptr) {
311
      mem_p = std::make_shared<dnnl::memory>(md, engine_);
312 313 314 315 316
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

317 318
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
319
    auto reorder_p =
320
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
321

322
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
323 324

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
325
                                         platform::TracerEventType::UserDefined,
326 327 328 329 330
                                         2,
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
331 332 333
    astream.wait();
  }

334
  template <typename F = T>
335
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
336 337 338 339 340
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const std::string& suffix,
      bool is_persistent = false,
A
Adam Osewski 已提交
341
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
342 343
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
344 345 346 347 348 349 350 351
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
352 353 354 355 356 357
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
358 359 360
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
361
        target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
A
Adam Osewski 已提交
362 363 364 365
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
366 367
          reorder_pdesc = dnnl::reorder::primitive_desc(
              *user_memory_p, *target_memory_p, attr);
A
Adam Osewski 已提交
368 369 370 371 372
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
373 374
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

375
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
376
        platform::RecordEvent record_reorder(
377 378 379
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
C
chenjian 已提交
380
            platform::EventRole::kUniqueOp);
381 382 383
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
384 385 386 387 388 389 390
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
391
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
392 393 394 395 396

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

397 398
      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
399
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
400 401
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
C
chenjian 已提交
402
        platform::RecordEvent record_reorder(
403 404 405
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
C
chenjian 已提交
406
            platform::EventRole::kUniqueOp);
407 408 409
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
410 411 412 413 414 415
        astream.wait();
      }
    }
    return target_memory_p;
  }

416
  std::shared_ptr<dnnl::memory> AcquireMemory(const std::string& suffix) {
417
    const auto local_key = key_ + suffix;
418
    return std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
419 420
  }

421
  const MKLDNNDeviceContext& dev_ctx_;
422
  dnnl::engine engine_;
423 424
  platform::Place place_;
  std::string key_common_;
425
  std::string key_;
426 427
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
428
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
429 430
};

431
template <typename T>
432 433
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
434
 public:
435 436 437 438 439 440 441 442 443 444
  BinaryMKLDNNHandler(const dnnl::algorithm algo,
                      const int axis,
                      const dnnl::engine engine,
                      platform::Place cpu_place,
                      const Tensor* x,
                      const Tensor* y,
                      Tensor* out,
                      float scale_x,
                      float scale_y,
                      float scale_out,
445
                      const dnnl::post_ops& post_ops = dnnl::post_ops{})
446
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
447 448
    const auto src_x_tz = phi::vectorize(x->dims());
    const auto src_y_tz = phi::vectorize(y->dims());
449 450 451
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
452 453
    const auto dst_tz = (out == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                         : phi::vectorize(out->dims());
454

455 456
    auto src0_md = x->mem_desc();
    auto src1_md = y->mem_desc();
457 458 459
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
460 461
                      src_y_tz.begin(),
                      src_y_tz.end());
J
Jacek Czaja 已提交
462 463 464 465 466
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end());
      }
467 468 469 470
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
471 472
                      src_x_tz.begin(),
                      src_x_tz.end());
J
Jacek Czaja 已提交
473 474 475 476 477
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end());
      }
478
      src0_md = src0_md.reshape(dims0_ex);
479
    }
480 481
    const auto dst_md = memory::desc(
        dst_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);
482

483
    auto attributes =
484
        CreateAttributes(algo, scale_x, scale_y, scale_out, post_ops);
485

486 487 488 489 490 491 492
    if (x->numel() < y->numel()) {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src1_md, src0_md, dst_md);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src0_md, src1_md, dst_md);
    }
493
  }
494
  std::shared_ptr<dnnl::memory> AcquireSecondSrcMemory(
495 496
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
497 498
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
499
  }
500 501

 private:
502
  static inline dnnl::primitive_attr CreateAttributes(
503 504 505 506
      dnnl::algorithm op,
      float scale_x,
      float scale_y,
      float scale_out,
507
      dnnl::post_ops post_ops = dnnl::post_ops{}) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
524
    float scale_0 = scale_out / scale_x;
525
    float scale_1 =
526
        op == dnnl::algorithm::binary_add ? scale_out / scale_y : 1.0 / scale_y;
527
    dnnl::primitive_attr attributes;
528 529 530 531
    attributes.set_scales(
        /* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0, {scale_0});
    attributes.set_scales(
        /* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0, {scale_1});
532
    if (post_ops.len() > 0) attributes.set_post_ops(post_ops);
533 534
    return attributes;
  }
535 536
};

537 538
template <typename T>
class BroadcastDataMKLDNNHandler
539
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
540 541
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
542
                             const dnnl::engine engine,
543 544 545 546 547
                             platform::Place cpu_place,
                             const Tensor* x,
                             Tensor* out,
                             float scale_x,
                             float scale_y,
548
                             const std::vector<int64_t>& extended_x_dims)
549
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
550
    const auto src0_tz = phi::vectorize(out->dims());
551
    const auto src0_md =
552 553
        dnnl::memory::desc(src0_tz,
                           platform::MKLDNNGetDataType<T>(),
554
                           platform::GetPlainMKLDNNFormat(src0_tz.size()));
555
    const auto src1_md = x->mem_desc().reshape(extended_x_dims);
556 557 558 559 560

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

561 562
    this->AcquireForwardPrimitiveDescriptor(
        attributes, algo, src0_md, src1_md, src0_md);
563 564
  }

565
  template <typename T_out = T>
566 567 568
  std::shared_ptr<dnnl::memory> AcquireZeroedDstMemory(framework::Tensor* out) {
    T_out* ptr = out->mutable_data<T_out>(this->place_,
                                          this->fwd_pd_->dst_desc().get_size());
569
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
570
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
571 572 573
  }
};

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static void AppendActivation(const framework::ExecutionContext& ctx,
                             dnnl::post_ops& post_ops,
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

627 628
template <typename T>
class ReductionMKLDNNHandler
629
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
630
 public:
631 632 633 634 635 636 637 638
  ReductionMKLDNNHandler(const dnnl::algorithm algo,
                         const float p,
                         const float eps,
                         const dnnl::engine engine,
                         platform::Place cpu_place,
                         const Tensor* x,
                         const Tensor* out,
                         std::vector<int64_t> out_tz,
639
                         const dnnl::primitive_attr& attrs = NULL)
640 641
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
642 643
    const auto out_md = memory::desc(out_tz,
                                     platform::MKLDNNGetDataType<T>(),
644
                                     dnnl::memory::format_tag::any);
645

646
    if (attrs)
647 648
      this->AcquireForwardPrimitiveDescriptor(
          attrs, algo, x->mem_desc(), out_md, p, eps);
649
    else
650 651
      this->AcquireForwardPrimitiveDescriptor(
          algo, x->mem_desc(), out_md, p, eps);
652 653 654
  }
};

655
template <typename T>
656 657 658 659 660 661 662 663 664 665
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
666
class MatMulV2MKLDNNHandler
667
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
668
 public:
669 670
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
671
                        paddle::platform::Place cpu_place,
672 673 674 675
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
676 677 678
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
679 680
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

740
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && is_output_fused) {
741 742 743
      out_strides = FakeTransposeStrides(out_ddims);
    }

744 745 746
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
747

748 749 750 751 752
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

768 769 770 771 772
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

773 774 775
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
776 777
    }

778 779 780 781
    if (ctx.HasInput("ResidualData")) {
      auto* residual_data = ctx.Input<Tensor>("ResidualData");
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
782 783
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
784 785
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
786 787 788 789
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
790 791
    }

792 793 794 795
    AppendActivation(ctx, post_operations);

    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
817
    const YT* input_data = input->data<YT>();
818
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
                                            to_void_cast<YT>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
834 835 836
  }
};

837
template <typename T>
838
class ActivationMKLDNNHandler
839 840
    : public MKLDNNHandlerNoCachingT<T,
                                     dnnl::eltwise_forward,
841
                                     dnnl::eltwise_backward> {
842
 public:
843
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
844
                          const framework::ExecutionContext& ctx,
845 846
                          const dnnl::engine engine,
                          Place cpu_place,
847
                          const framework::Tensor* x)
848 849
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::eltwise_forward,
850 851
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
852 853
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
854 855

    if (ctx.Type() == "scale") {
856 857
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
858 859 860
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
861 862 863 864 865
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
866 867 868 869 870 871 872 873
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
874 875
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
876
      if (algorithm == dnnl::algorithm::eltwise_swish) {
877 878 879
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
880
      }
881
    }
882

883
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
884 885 886
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
887
                                            beta);
888 889
  }

890
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
891
                          const framework::ExecutionContext& ctx,
892 893 894 895 896 897
                          const dnnl::engine engine,
                          Place cpu_place,
                          const framework::Tensor* x,
                          const Tensor* dout)
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::eltwise_forward,
898 899
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
900 901 902 903
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
904
    if (algorithm == dnnl::algorithm::eltwise_swish) {
905 906 907 908
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
909

910 911 912 913 914 915 916
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

917
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
918 919 920
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
921
                                            beta);
922 923
    this->AcquireBackwardPrimitiveDescriptor(
        algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta);
924
  }
925

926
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
927 928
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
929
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
930
                                            to_void_cast<T>(input_data));
931 932 933
  }
};

934 935 936
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
937
  if (act_type == "swish") {
938
    attr_map.emplace("beta", "fuse_alpha");
939
  } else if (act_type == "relu6") {
940
    attr_map.emplace("threshold", "fuse_alpha");
941
  } else if (act_type == "hard_sigmoid") {
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
968 969
}

970
class ReorderMKLDNNHandler {
971
 public:
A
Adam 已提交
972
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
973
                       framework::proto::VarType::Type vtype,
974 975
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
976
      : dims_(dims),
977
        vtype_(vtype),
978 979
        vtype_dst_(vtype),
        dtype_(dtype),
980 981
        dtype_dst_(dtype),
        engine_(engine) {}
982 983 984

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
985
                       dnnl::memory::data_type dtype,
986
                       framework::proto::VarType::Type vtype_dst,
987 988
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
989
      : dims_(dims),
990 991 992
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
993 994
        dtype_dst_(dtype_dst),
        engine_(engine) {}
995

996 997 998 999 1000
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

1001 1002 1003 1004
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
1005 1006
  }

1007
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
1008 1009
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
1010
      const std::shared_ptr<dnnl::memory>& mem_p) {
1011
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
1012 1013
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
1014 1015 1016
    return sub_mem_p;
  }

1017 1018 1019
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
1020
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
1021
    auto dst_data = output->mutable_data(
1022
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
1023
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1024 1025
  }

1026
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
1027 1028
      framework::Tensor* output,
      const dnnl::memory::desc& src_md,
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

1043
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
1044 1045 1046 1047
      framework::Tensor* output,
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
1048
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
1049
    auto dst_data = output->mutable_data(
1050
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
1051
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1052 1053
  }

1054 1055 1056 1057
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
1058 1059
  }

1060 1061 1062 1063
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
1064 1065
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
1066 1067
  }

1068
 private:
A
Adam 已提交
1069
  std::vector<int64_t> dims_;
1070
  framework::proto::VarType::Type vtype_, vtype_dst_;
1071 1072
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
1073 1074
};

1075 1076
template <typename T>
static void SetDstMemoryQuantized(
1077 1078 1079 1080
    const framework::ExecutionContext& ctx,
    framework::Tensor* output,
    std::vector<int64_t> dst_tz,
    const dnnl::engine& engine,
1081 1082
    std::shared_ptr<dnnl::memory::desc>& dst_md,  // NOLINT
    std::shared_ptr<dnnl::memory>& dst_memory,    // NOLINT
1083
    MKLDNNMemoryFormat output_format) {
1084 1085
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1086
  MKLDNNMemoryFormat dst_fmt;
1087

1088 1089
  PADDLE_ENFORCE_LE(dst_dims,
                    5,
1090 1091 1092 1093
                    platform::errors::InvalidArgument(
                        "Dst memory for quantization can not have "
                        "dims > 5. But received dst_dims is %d.",
                        dst_dims));
1094
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1095

1096 1097 1098 1099 1100
  auto tmp_dst_md =
      platform::MKLDNNMemDesc({dst_tz},
                              paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<T>::DataType()),
                              dst_fmt);
1101
  dst_md.reset(new dnnl::memory::desc(tmp_dst_md));
A
Adam 已提交
1102
  dst_memory.reset(
1103
      new dnnl::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1104
}
A
Adam Osewski 已提交
1105

J
Jacek Czaja 已提交
1106 1107
}  // namespace platform
}  // namespace paddle