mkldnn_reuse.h 16.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/backends/onednn/onednn_reuse.h"
J
Jacek Czaja 已提交
29 30 31 32 33

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = dnnl::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T,
          typename TForward,
38 39
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
40 41
using MKLDNNHandlerT =
    phi::funcs::OneDNNHandlerT<T, TForward, TBackward, TBackward_params>;
42

43 44
template <typename T,
          typename TForward,
45 46
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
47 48
using MKLDNNHandlerNoCachingT = phi::funcs::
    OneDNNHandlerNoCachingT<T, TForward, TBackward, TBackward_params>;
49

50
template <typename T>
51
using ReductionMKLDNNHandler = phi::funcs::ReductionOneDNNHandler<T>;
52

53
template <typename T>
54
using BroadcastDataMKLDNNHandler = phi::funcs::BroadcastDataOneDNNHandler<T>;
55

56 57
template <typename T>
using BinaryMKLDNNHandler = phi::funcs::BinaryOneDNNHandler<T>;
58

59
static void AppendActivation(const framework::ExecutionContext& ctx,
60
                             dnnl::post_ops& post_ops,  // NOLINT
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

112
template <typename T>
113 114 115 116 117 118 119 120 121 122
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

template <typename XT, typename YT, typename OT>
123
class MatMulV2MKLDNNHandler
124
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
125
 public:
126 127
  MatMulV2MKLDNNHandler(const framework::ExecutionContext& ctx,
                        const dnnl::engine engine,
128
                        paddle::platform::Place cpu_place,
129 130 131 132
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
133 134 135
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
136 137
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

197 198
    // TODO(jczaja): Why not for int8??
    if (!IsInt8<OT>() && is_output_fused) {
199 200 201
      out_strides = FakeTransposeStrides(out_ddims);
    }

202 203 204
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<OT>(), out_strides);
205

206 207 208 209 210
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  float ComputeOutputScale(const framework::ExecutionContext& ctx) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
    if (ctx.HasAttr("Scale_x") && ctx.HasAttr("Scale_y") &&
        ctx.HasAttr("Scale_out")) {
      float scale_x = ctx.Attr<float>("Scale_x");
      float scale_y = ctx.Attr<float>("Scale_y");
      bool force_fp32_out = ctx.HasAttr("force_fp32_output")
                                ? ctx.Attr<bool>("force_fp32_output")
                                : false;
      float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
      alpha *= scale_out / (scale_x * scale_y);
    }
    return alpha;
  }

226 227 228 229 230
  dnnl::primitive_attr CreateMatmulAttrs(
      const framework::ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

231 232 233
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
234 235
    }

236
    if (ctx.HasInput("ResidualData")) {
237
      auto* residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
238 239
      auto residual_data_tz = phi::vectorize(residual_data->dims());
      auto residual_data_md = memory::desc(residual_data_tz,
240 241
                                           MKLDNNGetDataType<OT>(),
                                           dnnl::memory::format_tag::any);
242 243
      post_operations.append_binary(dnnl::algorithm::binary_add,
                                    residual_data_md);
244 245 246 247
      if (ctx.HasAttr("Scale_in_eltwise")) {
        float sum_scale = scale_out / ctx.Attr<float>("Scale_in_eltwise");
        post_operations.append_sum(sum_scale);
      }
248 249
    }

250 251
    AppendActivation(ctx, post_operations);

252 253 254 255 256 257
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

258 259
    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

280
  std::shared_ptr<memory> AcquireWeightsMemory(const phi::DenseTensor* input) {
281
    const YT* input_data = input->data<YT>();
282
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
283 284 285
                                            to_void_cast<YT>(input_data));
  }

286
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output) {
287 288 289
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
290 291 292 293
    // pointer for every new batch. Hence phi::DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of phi::DenseTensor as computed in ComputeInferShape
294 295
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
296 297 298
  }
};

299 300 301
static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
302
  if (act_type == "swish") {
303
    attr_map.emplace("beta", "fuse_alpha");
304
  } else if (act_type == "relu6") {
305
    attr_map.emplace("threshold", "fuse_alpha");
306
  } else if (act_type == "hard_sigmoid") {
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
333 334
}

335
class ReorderMKLDNNHandler {
336
 public:
A
Adam 已提交
337
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
338
                       framework::proto::VarType::Type vtype,
339 340
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
341
      : dims_(dims),
342
        vtype_(vtype),
343 344
        vtype_dst_(vtype),
        dtype_(dtype),
345 346
        dtype_dst_(dtype),
        engine_(engine) {}
347 348 349

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
350
                       dnnl::memory::data_type dtype,
351
                       framework::proto::VarType::Type vtype_dst,
352 353
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
354
      : dims_(dims),
355 356 357
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
358 359
        dtype_dst_(dtype_dst),
        engine_(engine) {}
360

361 362 363 364 365
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

366 367 368 369
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
370 371
  }

372
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
373 374
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
375
      const std::shared_ptr<dnnl::memory>& mem_p) {
376
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
377 378
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
379 380 381
    return sub_mem_p;
  }

382
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor* output,
383 384
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
385
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
386
    auto dst_data = output->mutable_data(
387
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
388
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
389 390
  }

391
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
392
      phi::DenseTensor* output,
393
      const dnnl::memory::desc& src_md,
394 395 396 397 398 399 400 401 402 403 404 405 406 407
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

408
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
409
      phi::DenseTensor* output,
410 411 412
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
413
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
414
    auto dst_data = output->mutable_data(
415
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
416
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
417 418
  }

419 420 421 422
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
423 424
  }

425 426 427 428
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
429 430
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
431 432
  }

433
 private:
A
Adam 已提交
434
  std::vector<int64_t> dims_;
435
  framework::proto::VarType::Type vtype_, vtype_dst_;
436 437
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
438
};
J
Jacek Czaja 已提交
439 440
}  // namespace platform
}  // namespace paddle