mkldnn_reuse.h 45.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

23
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
24
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
27 28 29 30 31 32
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = dnnl::memory;
J
Jacek Czaja 已提交
37

38 39 40 41 42
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
43
  MKLDNNHandlerNoCachingT(dnnl::engine engine, platform::Place cpu_place)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_, platform::errors::Unavailable("BWD_PD should be set when "
                                                 "getting BWD prim ."));
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

63
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
64 65 66 67 68 69 70
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
71
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
72 73 74 75 76 77
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
78
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
79 80 81 82
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
83
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
84 85 86 87 88 89
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

90
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
91 92 93 94 95 96
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
  }

97
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
98 99 100 101 102 103 104
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
105
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
106 107 108 109 110 111 112 113 114 115 116 117
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
118
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

182 183 184
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
185 186
  }

187 188 189
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md) {
    return std::make_shared<dnnl::memory>(md, engine_);
190 191
  }

192 193
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
194
    auto reorder_p =
195
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
196 197 198 199

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
200 201
                                         platform::TracerEventType::UserDefined,
                                         2, platform::EventRole::kUniqueOp);
202 203
    reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                 {DNNL_ARG_TO, *target_memory_p}});
204 205 206 207
    astream.wait();
  }

  template <typename F = T>
208 209 210
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, bool is_persistent = false,
211
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
212
    std::shared_ptr<dnnl::memory> target_memory_p;
213 214 215 216 217 218 219
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
220
      target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
221 222 223 224
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
225 226 227
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
228 229
      reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                   {DNNL_ARG_TO, *target_memory_p}});
230 231 232 233 234 235 236
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

237
  dnnl::engine engine_;
238 239 240 241 242 243
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

244
template <typename T, typename TForward,
245 246
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
247 248
class MKLDNNHandlerT {
 public:
249
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, dnnl::engine engine,
250 251 252 253 254
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
255
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
256
        fwd_pd_(nullptr),
257 258 259
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
260

A
Adam 已提交
261
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
262
    const std::string key_p = key_ + "@fwd_p";
263 264 265
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
266
      forward_p = std::make_shared<TForward>(*fwd_pd_);
267 268 269 270 271
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
272
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
273
    const std::string key_p = key_ + "@bwd_p";
274 275 276
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
277
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
278 279 280 281 282
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

283 284 285 286 287 288
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
289
                                             "BWD_PD should be set when "
290 291 292 293 294 295 296 297
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

298
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
299 300
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
301 302
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
303 304
  }

305
  template <typename T_out = T>
306
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
307 308
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
309
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
310 311 312
                                            "@dst_mem_p");
  }

313
  template <typename T_out = T>
314
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
315 316 317
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

318
  template <typename T_out = T>
319
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
320
      const framework::Tensor* output) {
321 322 323 324
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
325 326
  }

327
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
328 329
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
330 331
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
332 333
  }

334
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
335
      framework::Tensor* diffsrc) {
A
Adam 已提交
336 337 338 339
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
340 341
  }

342
  // Buffer of given Tensor is used for oneDNN computation
343
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
344 345 346 347
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
348
            "BWD_W_PD should be set when getting BWD grad of weights."));
349 350 351 352 353 354 355
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
356
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
357 358 359
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
360
            "BWD_W_PD should be set when getting BWD grad of weights."));
361 362 363 364
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

365
 protected:
366
  bool isCached() {
367 368 369 370 371 372 373
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

374
  bool isBwdCached() {
375
    const std::string key_pd = key_ + "@bwd_pd";
376 377 378
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

379 380 381
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
382 383 384 385 386 387 388 389
      if (std::is_same<TBackward_params, mkldnn_dummy_primitive>::value ==
          false) {
        const std::string key_bw_w_pd = key_ + "@bwd_w_pd";
        bwd_w_pd_ =
            std::static_pointer_cast<typename TBackward_params::primitive_desc>(
                dev_ctx_.GetBlob(key_bw_w_pd));
      }

390 391 392 393 394 395 396 397 398
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
399 400
  }

401 402 403 404 405 406
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
407 408 409 410 411 412 413 414 415 416 417
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

439 440
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
441
    // fwd_pd_ is set during grad by calling
442
    // AcquireForwardPrimitiveDescriptor
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

458
  template <typename... Args>
459
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
460
    // fwd_pd_ is set during grad by calling
461
    // AcquireForwardPrimitiveDescriptor
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

479
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
480
      const std::string& suffix) {
481
    return std::static_pointer_cast<dnnl::memory>(
482 483 484
        dev_ctx_.GetBlob(key_ + suffix));
  }

485 486
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr, const std::string& suffix) {
487
    const auto local_key = key_ + suffix;
488
    auto mem_p =
489
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
490
    if (mem_p == nullptr) {
491
      mem_p = std::make_shared<dnnl::memory>(md, engine_, ptr);
492 493 494 495 496 497 498
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

499 500
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, const std::string& suffix) {
501 502
    const auto local_key = key_ + suffix;
    auto mem_p =
503
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
504
    if (mem_p == nullptr) {
505
      mem_p = std::make_shared<dnnl::memory>(md, engine_);
506 507 508 509 510
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

511 512
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
513
    auto reorder_p =
514
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
515

516
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
517 518

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
519 520
                                         platform::TracerEventType::UserDefined,
                                         2, platform::EventRole::kUniqueOp);
521 522
    reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                 {DNNL_ARG_TO, *target_memory_p}});
523 524 525
    astream.wait();
  }

526
  template <typename F = T>
527 528 529
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, const std::string& suffix, bool is_persistent = false,
A
Adam Osewski 已提交
530 531
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
532 533 534 535 536 537 538 539
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
540 541 542 543 544 545
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
546 547 548
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
549
        target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
A
Adam Osewski 已提交
550 551 552 553 554 555 556 557 558 559 560
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p,
                                                        *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
561 562
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

563
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
564 565 566
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);
567 568
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
569 570 571 572 573 574 575
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
576
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
577 578 579 580 581

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

582 583
      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
584
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
585 586
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
C
chenjian 已提交
587 588 589
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);
590 591
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
592 593 594 595 596 597
        astream.wait();
      }
    }
    return target_memory_p;
  }

598
  std::shared_ptr<dnnl::memory> AcquireMemory(const std::string& suffix) {
599
    const auto local_key = key_ + suffix;
600
    return std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
601 602
  }

603
  const MKLDNNDeviceContext& dev_ctx_;
604
  dnnl::engine engine_;
605 606
  platform::Place place_;
  std::string key_common_;
607
  std::string key_;
608 609
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
610
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
611 612
};

613
template <typename T>
614 615
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
616
 public:
617
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
618
                      const dnnl::engine engine, platform::Place cpu_place,
619
                      const Tensor* x, const Tensor* y, Tensor* z,
620 621
                      float scale_x, float scale_y, float scale_z,
                      const dnnl::post_ops& post_ops = dnnl::post_ops())
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for X tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, x->layout()));
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for X tensor : %d (undef)",
                          static_cast<unsigned int>(x->format())));

    PADDLE_ENFORCE_EQ(
        y->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for Y tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, y->layout()));
    PADDLE_ENFORCE_NE(y->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Y tensor : %d (undef)",
                          static_cast<unsigned int>(y->format())));

643 644
    const auto src_x_tz = phi::vectorize(x->dims());
    const auto src_y_tz = phi::vectorize(y->dims());
645 646 647 648
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
    const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
649
                                       : phi::vectorize(z->dims());
650 651 652 653 654 655 656 657 658

    auto src0_md = dnnl::memory::desc(
        src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    auto src1_md = dnnl::memory::desc(
        src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(), src_y_tz.end());
J
Jacek Czaja 已提交
659 660 661 662 663
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end());
      }
664 665 666 667 668
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(), src_x_tz.end());
J
Jacek Czaja 已提交
669 670 671 672 673
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end());
      }
674
      src0_md = src0_md.reshape(dims0_ex);
675
    }
676 677 678 679
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);

    auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
680 681
    attributes.set_post_ops(post_ops);

682 683
    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            dst_md);
684
  }
685
  std::shared_ptr<dnnl::memory> AcquireSecondSrcMemory(
686 687
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
688 689
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
690
  }
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
723 724
};

725 726
template <typename T>
class BroadcastDataMKLDNNHandler
727
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
728 729
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
730
                             const dnnl::engine engine,
731 732
                             platform::Place cpu_place, const Tensor* out,
                             const Tensor* x, float scale_x, float scale_y,
733
                             const std::vector<int64_t>& input_dims)
734 735 736 737 738 739 740 741
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

742
    const auto src0_tz = phi::vectorize(out->dims());
743 744 745 746 747 748 749 750 751 752 753 754

    const auto src0_md = dnnl::memory::desc(
        src0_tz, platform::MKLDNNGetDataType<T>(), out->format());
    const auto src1_md = dnnl::memory::desc(
        input_dims, platform::MKLDNNGetDataType<T>(), out->format());

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            src0_md);
755 756
  }

757
  template <typename T_out = T>
758
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
759 760 761
    T_out* ptr = output->mutable_data<T_out>(
        this->place_, this->fwd_pd_->dst_desc().get_size());
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
762
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
763 764 765
  }
};

766 767
template <typename T>
class ReductionMKLDNNHandler
768
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
769 770
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
771
                         const float eps, const dnnl::engine engine,
772
                         platform::Place cpu_place, const Tensor* x,
773 774
                         const Tensor* y, std::vector<int64_t> y_tz,
                         const dnnl::primitive_attr& attr = NULL)
775 776 777 778 779 780 781 782 783
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

784
    const auto x_tz = phi::vectorize(x->dims());
785 786 787 788 789 790

    const auto x_md =
        dnnl::memory::desc(x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    const auto y_md =
        memory::desc(y_tz, platform::MKLDNNGetDataType<T>(), x->format());

791 792 793 794
    if (attr)
      this->AcquireForwardPrimitiveDescriptor(attr, algo, x_md, y_md, p, eps);
    else
      this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps);
795 796 797
  }
};

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
template <typename T>
class MatMulV2MKLDNNHandler
    : public paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul> {
 public:
  MatMulV2MKLDNNHandler(const dnnl::engine engine,
                        paddle::platform::Place cpu_place,
                        const std::vector<int64_t>& x_org_dims, bool trans_x,
                        const std::vector<int64_t>& y_org_dims, bool trans_y,
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
      : paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul>(engine,
                                                                   cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

    if (is_output_fused) {
      out_strides = FakeTransposeStrides(out_ddims);
    }

    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<T>(), out_strides);

    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<T>(input_data));
  }
};

906
template <typename T>
907
class ActivationMKLDNNHandler
908 909
    : public MKLDNNHandlerNoCachingT<T, dnnl::eltwise_forward,
                                     dnnl::eltwise_backward> {
910
 public:
911
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
912
                          const framework::ExecutionContext& ctx,
913
                          const dnnl::engine engine, Place cpu_place,
914
                          const framework::Tensor* in_x)
915 916 917
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::eltwise_forward,
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
918 919
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
920 921

    if (ctx.Type() == "scale") {
922 923
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
924 925 926
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
927 928 929 930 931
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
932 933 934 935 936 937 938 939
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
940 941
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
942
      if (algorithm == dnnl::algorithm::eltwise_swish) {
943 944 945
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
946
      }
947
    }
948

949 950 951 952 953
    PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6,
                   platform::errors::Unimplemented(
                       "Input dimension size can be 1, 2, 3, 4, "
                       "5, or 6, but now the dimension size is",
                       in_x->dims().size()));
954

955
    auto src_tz = phi::vectorize<int64_t>(in_x->dims());
956 957
    auto src_fmt = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto md =
958
        dnnl::memory::desc(src_tz, platform::MKLDNNGetDataType<T>(), src_fmt);
959

960
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
961
                                            algorithm, md, alpha, beta);
962 963
  }

964
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
965
                          const framework::ExecutionContext& ctx,
966
                          const dnnl::engine engine, Place cpu_place,
967
                          const framework::Tensor* in_x, const Tensor* out_grad)
968 969 970
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::eltwise_forward,
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
971 972 973 974
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
975
    if (algorithm == dnnl::algorithm::eltwise_swish) {
976 977 978 979
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
980

981 982 983 984 985 986 987
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

988
    auto diff_dst_tz = phi::vectorize<int64_t>(out_grad->dims());
989

990 991 992 993
    auto src_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto diff_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format();
994

995
    auto dims = phi::vectorize(in_x->dims());
996 997 998 999
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), src_fmt);
1000

1001
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
1002 1003 1004
                                            algorithm, src_md, alpha, beta);
    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
1005
  }
1006

1007
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
1008 1009
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
1010
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
1011
                                            to_void_cast<T>(input_data));
1012 1013 1014
  }
};

1015
class ReorderMKLDNNHandler {
1016
 public:
A
Adam 已提交
1017
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1018
                       framework::proto::VarType::Type vtype,
1019
                       dnnl::memory::data_type dtype, dnnl::engine engine)
1020
      : dims_(dims),
1021
        vtype_(vtype),
1022 1023
        vtype_dst_(vtype),
        dtype_(dtype),
1024 1025
        dtype_dst_(dtype),
        engine_(engine) {}
1026 1027 1028

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
1029
                       dnnl::memory::data_type dtype,
1030
                       framework::proto::VarType::Type vtype_dst,
1031
                       dnnl::memory::data_type dtype_dst, dnnl::engine engine)
1032
      : dims_(dims),
1033 1034 1035
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
1036 1037
        dtype_dst_(dtype_dst),
        engine_(engine) {}
1038

1039 1040 1041 1042
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
1043 1044
  }

1045
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
1046
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
1047
      const std::shared_ptr<dnnl::memory>& mem_p) {
1048
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
1049 1050
    auto sub_mem_p = std::make_shared<dnnl::memory>(sub_md, engine_,
                                                    mem_p->get_data_handle());
1051 1052 1053
    return sub_mem_p;
  }

1054 1055 1056
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
1057
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
1058 1059
    auto dst_data = output->mutable_data(
        place, framework::TransToPtenDataType(vtype_dst_), dst_md.get_size());
1060
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1061 1062
  }

1063
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
1064
      framework::Tensor* output, const std::vector<int64_t>& dims,
1065 1066
      const MKLDNNMemoryFormat& fmt, platform::Place place) {
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
1067 1068
    auto dst_data = output->mutable_data(
        place, framework::TransToPtenDataType(vtype_dst_), dst_md.get_size());
1069
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1070 1071
  }

1072 1073 1074 1075
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
1076 1077 1078
  }

 private:
A
Adam 已提交
1079
  std::vector<int64_t> dims_;
1080
  framework::proto::VarType::Type vtype_, vtype_dst_;
1081 1082
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
1083 1084
};

1085 1086 1087
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
1088 1089 1090
    std::vector<int64_t> dst_tz, const dnnl::engine& engine,
    std::shared_ptr<dnnl::memory::desc>& dst_md,  // NOLINT
    std::shared_ptr<dnnl::memory>& dst_memory,    // NOLINT
1091
    MKLDNNMemoryFormat output_format) {
1092 1093
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1094
  MKLDNNMemoryFormat dst_fmt;
1095

G
GaoWei8 已提交
1096 1097 1098 1099
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1100
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1101

A
Adam 已提交
1102
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1103
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1104
                    framework::DataTypeTrait<T>::DataType()),
1105
      dst_fmt);
1106
  dst_md.reset(new dnnl::memory::desc(tmp_dst_md));
A
Adam 已提交
1107
  dst_memory.reset(
1108
      new dnnl::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1109
}
A
Adam Osewski 已提交
1110

J
Jacek Czaja 已提交
1111 1112
}  // namespace platform
}  // namespace paddle