search.py 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
C
Chengmo 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
H
hong 已提交
20
from ..framework import core, _in_eager_mode
21 22 23
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
24
from paddle import _C_ops
Z
zhiboniu 已提交
25
from .logic import logical_not
26

27
# TODO: define searching & indexing functions of a tensor  
28 29
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
30

31 32
__all__ = []

33

34 35
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
36
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
56

57
        .. code-block:: python
李灿 已提交
58

59 60
            import paddle
            
61 62 63 64 65 66 67
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
68 69 70
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
71
            print(out1)
W
wawltor 已提交
72 73 74
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
75
            # [[1 3 2 0]
W
wawltor 已提交
76 77
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
78
            print(out2)
W
wawltor 已提交
79 80 81 82 83 84
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
85
            print(out3)
W
wawltor 已提交
86 87 88 89 90 91
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
92
    """
Z
zhiboniu 已提交
93
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
94
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


115
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
116 117 118 119 120
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
121
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
122 123
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
124 125
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
126
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
127 128 129
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
130 131 132
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
133 134

    Returns:
W
wawltor 已提交
135
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
136 137 138 139

    Examples:
        .. code-block:: python

W
wawltor 已提交
140
            import paddle
141

142 143 144
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
145
            out1 = paddle.argmax(x)
N
Noel 已提交
146
            print(out1) # 2
147
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
148
            print(out2) 
149
            # [2, 2, 0, 1]
W
wawltor 已提交
150
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
151
            print(out3) 
152 153 154 155
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
156
    """
157 158 159 160
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
161

162 163 164 165
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
166

167
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
168 169 170 171 172
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

Z
zhiboniu 已提交
173
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
174 175
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
176 177 178 179 180 181
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
182
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
183
    attrs = {}
W
wawltor 已提交
184 185 186 187
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
188
    attrs['dtype'] = var_dtype
W
wawltor 已提交
189 190 191 192 193 194
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


195
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
196 197 198 199 200 201 202 203 204 205
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
206
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
W
wawltor 已提交
207
        dtype(str): Data type of the output tensor which can
208
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

222 223 224
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
225
            out1 = paddle.argmin(x)
N
Noel 已提交
226
            print(out1) # 4
227
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
228
            print(out2) 
229
            # [1, 1, 1, 2]
W
wawltor 已提交
230
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
231
            print(out3) 
232 233 234 235
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
236
    """
237 238 239 240
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
241

242 243 244 245
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
246

247
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
248
    flatten = False
249
    if axis is None:
W
wawltor 已提交
250 251 252
        flatten = True
        axis = 0

Z
zhiboniu 已提交
253
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
254 255
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
256 257 258 259 260 261
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
262
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
263
    out = helper.create_variable_for_type_inference(var_dtype)
264
    attrs = {}
W
wawltor 已提交
265
    attrs['keepdims'] = keepdim
266
    attrs['axis'] = axis
W
wawltor 已提交
267
    attrs['flatten'] = flatten
268
    attrs['dtype'] = var_dtype
269
    helper.append_op(
W
wawltor 已提交
270
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
271 272
    out.stop_gradient = True
    return out
273 274


275
def index_select(x, index, axis=0, name=None):
276
    """
S
swtkiwi 已提交
277

278 279 280 281
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
282

283
    Args:
284 285 286
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
287 288 289
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
290 291

    Returns:
292
        Tensor: A Tensor with same data type as ``x``.
293
    
294 295
    Examples:
        .. code-block:: python
296
            
297 298
            import paddle

299 300 301 302
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
303 304 305 306 307 308 309 310
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
311
    """
312

Z
zhiboniu 已提交
313
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
314
        return _C_ops.index_select(x, index, 'dim', axis)
315

316 317 318
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
319
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
320
                             'paddle.tensor.search.index_select')
321

322
    out = helper.create_variable_for_type_inference(x.dtype)
323 324 325

    helper.append_op(
        type='index_select',
326
        inputs={'X': x,
327 328
                'Index': index},
        outputs={'Out': out},
329
        attrs={'dim': axis})
330 331 332
    return out


333
def nonzero(x, as_tuple=False):
334 335 336 337 338 339 340 341
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
342

343
    Args:
344
        x (Tensor): The input tensor variable.
345 346 347
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
348
        Tensor. The data type is int64.
349 350

    Examples:
351

N
Noel 已提交
352
        .. code-block:: python
李灿 已提交
353

354
            import paddle
355 356

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
357 358
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
359 360
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
361
            print(out_z1)
362 363 364 365 366
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
367
                print(out)
368 369 370 371 372 373 374
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
375
            print(out_z2)
376 377 378 379
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
380
                print(out)
381 382
            #[[1]
            # [3]]
N
Noel 已提交
383

384 385
    """
    list_out = []
386
    shape = x.shape
387 388
    rank = len(shape)

Z
zhiboniu 已提交
389
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
390
        outs = _C_ops.where_index(x)
391
    else:
392
        outs = layers.where(x)
393 394 395 396 397 398 399 400

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
401
                paddle.slice(
402
                    outs, axes=[1], starts=[i], ends=[i + 1]))
403 404 405
        return tuple(list_out)


406
def sort(x, axis=-1, descending=False, name=None):
407
    """
S
swtkiwi 已提交
408

W
wawltor 已提交
409
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
410

411
    Args:
412
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
413 414 415 416 417 418 419 420 421 422 423
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
424
        Tensor: sorted tensor(with the same shape and data type as ``x``).
425
    Examples:
N
Noel 已提交
426

427
        .. code-block:: python
N
Noel 已提交
428

429
            import paddle
N
Noel 已提交
430

431 432 433 434 435 436 437
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
438 439 440
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
441
            print(out1)
W
wawltor 已提交
442 443 444 445 446 447
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
448
            print(out2)
449
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
450 451 452 453 454
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
455
            print(out3)
456
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
457 458 459 460 461
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
462
    """
Z
zhiboniu 已提交
463
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
464
        out, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
W
wawltor 已提交
465
        return out
466
    helper = LayerHelper("sort", **locals())
467 468
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
469 470 471 472
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
473
        inputs={'X': x},
474 475 476 477
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
478
    return out
C
Chengmo 已提交
479 480


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
Z
zhiboniu 已提交
512
    if paddle.in_dynamic_mode():
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
534
def where(condition, x=None, y=None, name=None):
535
    r"""
536 537
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
538 539 540
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

541
    .. math::
C
Chengmo 已提交
542

543
      out_i =
R
ronnywang 已提交
544 545 546 547
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
548

549

550
    Args:
R
ronnywang 已提交
551
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
552 553
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
554 555 556 557 558

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

559
    Returns:
G
GaoWei8 已提交
560
        Tensor: A Tensor with the same data dype as x. 
561

562 563 564
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
565
          import paddle
566

567 568 569
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
570

G
GaoWei8 已提交
571
          print(out)
572
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
573 574 575 576 577 578

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
579
    """
R
ronnywang 已提交
580 581 582 583 584 585
    if np.isscalar(x):
        x = layers.fill_constant([1], np.array([x]).dtype.name, x)

    if np.isscalar(y):
        y = layers.fill_constant([1], np.array([y]).dtype.name, y)

R
ronnywang 已提交
586 587 588 589 590 591
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
592
    if not paddle.in_dynamic_mode():
593
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
594
        check_variable_and_dtype(
595
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
596
        check_variable_and_dtype(
597
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
598

599
    condition_shape = list(condition.shape)
600 601
    x_shape = list(x.shape)
    y_shape = list(y.shape)
602

603
    if x_shape == y_shape and condition_shape == x_shape:
604 605 606 607 608
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
609 610 611 612 613
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
614
            return out
615

Z
zhiboniu 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

    if paddle.in_dynamic_mode():
H
hong 已提交
630 631 632
        if _in_eager_mode():
            return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                            broadcast_y)
633
        return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
634
    else:
635 636 637 638 639 640 641 642 643 644 645 646
        helper = LayerHelper("where", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type='where',
            inputs={
                'Condition': broadcast_condition,
                'X': broadcast_x,
                'Y': broadcast_y
            },
            outputs={'Out': [out]})

647 648 649
        return out


C
Chengmo 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
674
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
675
            int32, int64, float32, float64.
C
Chengmo 已提交
676
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
677 678 679
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
680
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
681 682 683 684 685 686

    Examples:

        .. code-block:: python

            import paddle
687 688 689 690 691 692 693 694 695 696 697

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
698
            print(out_z1)
699 700 701 702 703 704 705 706
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
707
            print(top_value)
708 709 710 711
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
712
            print(top_index)
713 714 715 716
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
717
            print(out_z2)
718 719 720
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
721

C
Chengmo 已提交
722
    """
Z
zhiboniu 已提交
723
    if paddle.in_dynamic_mode():
H
hong 已提交
724 725
        if _in_eager_mode():
            return _C_ops.final_state_index_sample(x, index)
W
wanghuancoder 已提交
726
        return _C_ops.index_sample(x, index)
C
Chengmo 已提交
727

C
Chengmo 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
762 763 764 765 766 767 768

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
769 770 771 772
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

Z
zhiboniu 已提交
773
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
774
        return _C_ops.masked_select(x, mask)
775 776 777 778 779 780 781 782 783 784 785

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

815
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
816
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
817
           print(value_1)
W
wawltor 已提交
818
           # [7]
N
Noel 已提交
819
           print(indices_1)
W
wawltor 已提交
820
           # [3] 
821
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
822
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
823
           print(value_2)
W
wawltor 已提交
824 825
           # [[7]
           #  [6]]
N
Noel 已提交
826
           print(indices_2)
W
wawltor 已提交
827 828 829
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
830
           print(value_3)
W
wawltor 已提交
831 832
           # [[7]
           #  [6]]
N
Noel 已提交
833
           print(indices_3)
W
wawltor 已提交
834 835 836
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
837
           print(value_4)
W
wawltor 已提交
838
           # [[2 6 5 7]]
N
Noel 已提交
839
           print(indices_4)
W
wawltor 已提交
840 841 842
           # [[1 1 0 0]]

    """
Z
zhiboniu 已提交
843
    if paddle.in_dynamic_mode():
W
wawltor 已提交
844 845
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
W
wanghuancoder 已提交
846 847 848
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
849
        else:
W
wanghuancoder 已提交
850 851 852
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """

Z
zhiboniu 已提交
927
    if paddle.in_dynamic_mode():
Y
Yanxing Shi 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
Z
zhiboniu 已提交
990
    if paddle.in_dynamic_mode():
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        if axis is not None:
            return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim", keepdim)
        else:
            return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices