test_pool3d_op.py 37.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle
22
import paddle.fluid.core as core
23
from op_test import OpTest
24
import paddle.fluid as fluid
C
chengduoZH 已提交
25 26


27 28 29 30 31 32 33 34
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def pool3D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCDHW',
                         pool_type='max',
                         padding_algorithm="EXPLICIT"):
    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCDHW":
                input_data_shape = x.shape[2:5]
            elif data_format == "NDHWC":
                input_data_shape = x.shape[1:4]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 3 or len(paddings) == 6
    is_sys = True if len(paddings) == 3 else False

    N = x.shape[0]
    C,D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

C
chengduoZH 已提交
89 90
    if global_pool == 1:
        ksize = [D, H, W]
91 92 93 94 95 96 97 98 99
        paddings = [0 for _ in range(len(paddings))]

    pad_d_forth = paddings[0] if is_sys else paddings[0]
    pad_d_back = paddings[0] if is_sys else paddings[1]
    pad_h_up = paddings[1] if is_sys else paddings[2]
    pad_h_down = paddings[1] if is_sys else paddings[3]
    pad_w_left = paddings[2] if is_sys else paddings[4]
    pad_w_right = paddings[2] if is_sys else paddings[5]

100 101 102
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
103 104 105 106 107 108 109 110 111 112 113 114 115

        D_out = (D - ksize[0] + pad_d_forth+pad_d_back + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode  else (D - ksize[0] + pad_d_forth+pad_d_back) // strides[0] + 1

        H_out = (H - ksize[1] + pad_h_up + pad_h_down + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (H - ksize[1] + pad_h_up + pad_h_down) // strides[1] + 1

        W_out = (W - ksize[2] + pad_w_left + pad_w_right + strides[2] - 1) // strides[2] + 1 \
            if ceil_mode else (W - ksize[2] + pad_w_left + pad_w_right) // strides[2] + 1


    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
116
    for k in range(D_out):
117 118 119
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
120

121
        for i in range(H_out):
122 123 124
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
125

126
            for j in range(W_out):
127 128 129 130
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
131

D
Double_V 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                    d_start = k * strides[0] - pad_d_forth
                    d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth,
                                    D + pad_d_back))
                    h_start = i * strides[1] - pad_h_up
                    h_end = np.min(
                        (i * strides[1] + ksize[1] - pad_h_up, H + pad_h_down))
                    w_start = j * strides[2] - pad_w_left
                    w_end = np.min((j * strides[2] + ksize[2] - pad_w_left,
                                    W + pad_w_right))

                    field_size = (d_end - d_start) * (h_end - h_start) * (
                        w_end - w_start)
                    w_start = np.max((w_start, 0))
                    d_start = np.max((d_start, 0))
                    h_start = np.max((h_start, 0))
                    w_end = np.min((w_end, W))
                    d_end = np.min((d_end, D))
                    h_end = np.min((h_end, H))
150 151 152 153
                if data_format == 'NCDHW':
                    x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
                                 w_end]
                    if pool_type == 'avg':
D
Double_V 已提交
154 155 156 157
                        if (exclusive or adaptive):
                            field_size = (d_end - d_start) * (
                                h_end - h_start) * (w_end - w_start)

158 159 160 161 162 163 164 165 166
                        out[:, :, k, i, j] = np.sum(x_masked,
                                                    axis=(2, 3, 4)) / field_size
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
                    x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
                                 w_end, :]
                    if pool_type == 'avg':
D
Double_V 已提交
167 168 169 170
                        if (exclusive or adaptive):
                            field_size = (d_end - d_start) * (
                                h_end - h_start) * (w_end - w_start)

171 172 173 174
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
C
chengduoZH 已提交
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    return out


def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False):
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="max")
C
chengduoZH 已提交
198 199 200
    return out


201 202 203 204 205
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
206
                             ceil_mode=False,
207 208
                             exclusive=True,
                             adaptive=False):
209 210 211 212 213 214 215 216 217 218 219
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="avg")
C
chengduoZH 已提交
220 221 222
    return out


C
cnn 已提交
223
class TestPool3D_Op(OpTest):
C
chengduoZH 已提交
224
    def setUp(self):
K
Kexin Zhao 已提交
225
        self.op_type = "pool3d"
226
        self.init_kernel_type()
R
ronnywang 已提交
227
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
C
fix bug  
chengduoZH 已提交
228
        self.init_test_case()
229 230
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
231
        self.init_global_pool()
K
Kexin Zhao 已提交
232
        self.init_kernel_type()
C
chengduoZH 已提交
233
        self.init_pool_type()
234
        self.init_ceil_mode()
235
        self.init_exclusive()
236
        self.init_adaptive()
237 238
        self.init_data_format()
        self.init_shape()
239
        paddle.enable_static()
C
chengduoZH 已提交
240

K
Kexin Zhao 已提交
241
        input = np.random.random(self.shape).astype(self.dtype)
242
        output = pool3D_forward_naive(
243
            input, self.ksize, self.strides, self.paddings, self.global_pool,
244
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
245
            self.pool_type, self.padding_algorithm).astype(self.dtype)
246

K
Kexin Zhao 已提交
247
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
248 249 250 251 252

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
253 254
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
255
            'use_cudnn': self.use_cudnn,
256
            'ceil_mode': self.ceil_mode,
257
            'data_format': self.data_format,
258
            'exclusive': self.exclusive,
259 260
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
261 262
        }

K
Kexin Zhao 已提交
263
        self.outputs = {'Out': output}
C
chengduoZH 已提交
264

265
    def has_cudnn(self):
266 267
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
268
    def test_check_output(self):
269
        if self.has_cudnn():
270 271 272 273
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
274 275

    def test_check_grad(self):
K
Kexin Zhao 已提交
276 277
        if self.dtype == np.float16:
            return
278
        if self.has_cudnn() and self.pool_type != "max":
279
            place = core.CUDAPlace(0)
R
ronnywang 已提交
280 281 282 283 284
            if core.is_compiled_with_rocm():
                self.check_grad_with_place(
                    place, set(['X']), 'Out', max_relative_error=1e-2)
            else:
                self.check_grad_with_place(place, set(['X']), 'Out')
285
        elif self.pool_type != "max":
R
ronnywang 已提交
286 287 288 289
            if core.is_compiled_with_rocm():
                self.check_grad(set(['X']), 'Out', max_relative_error=1e-2)
            else:
                self.check_grad(set(['X']), 'Out')
C
chengduoZH 已提交
290

291 292 293 294
    def init_data_format(self):
        self.data_format = "NCDHW"

    def init_shape(self):
295
        self.shape = [1, 3, 5, 6, 5]
296 297

    def init_test_case(self):
298 299 300 301
        self.ksize = [2, 3, 1]
        self.strides = [2, 2, 3]

    def init_paddings(self):
C
chengduoZH 已提交
302
        self.paddings = [0, 0, 0]
303
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
304

K
Kexin Zhao 已提交
305
    def init_kernel_type(self):
306
        self.use_cudnn = False
C
chengduoZH 已提交
307 308 309 310 311 312 313

    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = True

314 315 316
    def init_ceil_mode(self):
        self.ceil_mode = False

317
    def init_exclusive(self):
318
        self.exclusive = True
319

320 321 322
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
323

C
cnn 已提交
324
class TestCase1(TestPool3D_Op):
325
    def init_shape(self):
326
        self.shape = [1, 3, 7, 7, 7]
327 328

    def init_test_case(self):
C
chengduoZH 已提交
329 330
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
331 332

    def init_paddings(self):
C
chengduoZH 已提交
333
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
334

C
chengduoZH 已提交
335
    def init_pool_type(self):
C
chengduoZH 已提交
336
        self.pool_type = "avg"
C
chengduoZH 已提交
337 338 339 340 341

    def init_global_pool(self):
        self.global_pool = False


C
cnn 已提交
342
class TestCase2(TestPool3D_Op):
343
    def init_shape(self):
344
        self.shape = [1, 3, 6, 7, 7]
345 346

    def init_test_case(self):
347 348 349 350
        self.ksize = [3, 3, 4]
        self.strides = [1, 3, 2]

    def init_paddings(self):
C
chengduoZH 已提交
351 352
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
353 354 355 356 357 358
    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
359

C
cnn 已提交
360
class TestCase3(TestPool3D_Op):
C
chengduoZH 已提交
361
    def init_pool_type(self):
C
chengduoZH 已提交
362 363 364
        self.pool_type = "max"


C
chengduoZH 已提交
365 366
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
367
        self.pool_type = "max"
C
chengduoZH 已提交
368 369


C
chengduoZH 已提交
370 371
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
372
        self.pool_type = "max"
C
chengduoZH 已提交
373 374


375
#--------------------test pool3d cudnn--------------------
K
Kexin Zhao 已提交
376 377


378 379 380 381 382 383
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
384

385 386 387
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
C
chengduoZH 已提交
388 389


C
cnn 已提交
390
create_test_cudnn_class(TestPool3D_Op)
391 392 393 394 395
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
K
Kexin Zhao 已提交
396 397


398 399 400 401 402 403 404
def create_test_cudnn_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
405

406 407 408 409
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
R
ronnywang 已提交
410 411 412 413
                    if core.is_compiled_with_rocm():
                        self.check_output_with_place(place, atol=1e-2)
                    else:
                        self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
414

415 416 417
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
C
chengduoZH 已提交
418

K
Kexin Zhao 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
def create_test_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = False
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-2)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestFp16Case.__name__ = cls_name
    globals()[cls_name] = TestFp16Case


C
cnn 已提交
439
create_test_cudnn_fp16_class(TestPool3D_Op)
440 441 442 443 444
create_test_cudnn_fp16_class(TestCase1)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
445 446 447 448 449 450 451

create_test_fp16_class(TestPool3D_Op)
create_test_fp16_class(TestCase1)
create_test_fp16_class(TestCase2)
create_test_fp16_class(TestCase3)
create_test_fp16_class(TestCase4)
create_test_fp16_class(TestCase5)
K
Kexin Zhao 已提交
452 453


454 455 456 457 458 459 460
# ---- test ceil mode ------
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool3DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
C
chengduoZH 已提交
461

462 463
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
464

465 466 467
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
468 469


C
cnn 已提交
470
create_test_cudnn_use_ceil_class(TestPool3D_Op)
471
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
472

C
chengduoZH 已提交
473

474 475 476 477
def create_test_use_ceil_class(parent):
    class TestPool3DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
478

479 480 481
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
482 483


484 485
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
K
Kexin Zhao 已提交
486

487 488 489 490

class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
491 492


493 494 495
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude(TestCase2):
K
Kexin Zhao 已提交
496
    def init_kernel_type(self):
497
        self.use_cudnn = True
K
Kexin Zhao 已提交
498

499 500 501 502 503 504 505 506 507
    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


508 509 510 511 512
class TestAvgPoolAdaptiveAsyOutSize(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_shape(self):
513
        self.shape = [1, 3, 3, 4, 4]
514 515 516 517 518 519

    def init_test_case(self):
        self.ksize = [2, 2, 3]
        self.strides = [1, 1, 1]


520
#-------test pool3d with asymmetric padding------
C
cnn 已提交
521
class TestPool3D_Op_AsyPadding(TestPool3D_Op):
522
    def init_test_case(self):
523 524 525 526
        self.ksize = [3, 4, 3]
        self.strides = [1, 1, 2]

    def init_paddings(self):
527 528 529
        self.paddings = [0, 0, 0, 2, 3, 0]

    def init_shape(self):
530
        self.shape = [1, 3, 5, 5, 6]
531 532 533 534


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
535 536 537 538
        self.ksize = [3, 3, 4]
        self.strides = [1, 1, 2]

    def init_paddings(self):
539 540 541
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
542
        self.shape = [1, 3, 7, 7, 6]
543 544 545 546 547 548


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
549 550

    def init_paddings(self):
551 552 553
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
554
        self.shape = [1, 3, 7, 7, 7]
555 556 557 558 559 560


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
561 562

    def init_paddings(self):
563 564 565
        self.paddings = [1, 0, 0, 0, 1, 0]

    def init_shape(self):
566
        self.shape = [1, 3, 5, 5, 5]
K
Kexin Zhao 已提交
567

568 569 570 571 572

class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
573 574

    def init_paddings(self):
575 576 577
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
578
        self.shape = [1, 3, 7, 7, 7]
579 580 581 582 583 584


class TestCase5_AsyPadding(TestCase5):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
585 586

    def init_paddings(self):
587 588 589
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
590
        self.shape = [1, 3, 7, 7, 7]
591 592


C
cnn 已提交
593
create_test_cudnn_class(TestPool3D_Op_AsyPadding)
594 595 596 597 598 599
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

C
cnn 已提交
600
create_test_cudnn_fp16_class(TestPool3D_Op_AsyPadding)
601 602 603 604 605 606
create_test_cudnn_fp16_class(TestCase1_AsyPadding)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

C
cnn 已提交
607
create_test_cudnn_use_ceil_class(TestPool3D_Op_AsyPadding)
608 609 610 611 612 613 614 615 616 617
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

618
    def init_paddings(self):
D
Double_V 已提交
619
        self.paddings = [2, 2, 1, 1, 0, 0]
620 621 622 623 624


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding(TestCase2):
K
Kexin Zhao 已提交
625 626 627
    def init_kernel_type(self):
        self.use_cudnn = True

628 629
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
630

631
    def init_paddings(self):
632
        self.paddings = [1, 0, 0, 0, 0, 0]
C
chengduoZH 已提交
633

634
    def init_shape(self):
635
        self.shape = [1, 3, 5, 5, 5]
636 637


638 639 640
class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True
641

642
    def init_paddings(self):
643
        self.paddings = [1, 0, 2, 1, 2, 1]
644 645


646
# ------------ test channel_last --------------
C
cnn 已提交
647
class TestPool3D_channel_last(TestPool3D_Op):
648 649
    def init_data_format(self):
        self.data_format = "NDHWC"
650

651
    def init_shape(self):
652
        self.shape = [1, 5, 5, 6, 3]
653

654 655 656 657 658 659

class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
660
        self.shape = [1, 7, 7, 7, 3]
661 662 663 664 665 666 667


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
668
        self.shape = [1, 7, 7, 5, 3]
669 670 671 672 673 674 675


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
676
        self.shape = [1, 5, 6, 5, 3]
677 678 679 680 681 682 683


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
684
        self.shape = [1, 7, 6, 7, 3]
685 686 687 688 689 690 691


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
692
        self.shape = [1, 7, 7, 7, 3]
693 694


C
cnn 已提交
695
create_test_cudnn_class(TestPool3D_channel_last)
696 697 698 699 700 701
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

C
cnn 已提交
702
create_test_cudnn_use_ceil_class(TestPool3D_channel_last)
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
729
        self.shape = [1, 7, 7, 7, 3]
730 731 732 733 734 735 736


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
737 738 739
    def init_exclusive(self):
        self.exclusive = False

740

741 742 743 744 745 746
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

747 748 749
    def init_exclusive(self):
        self.exclusive = False

750

751
class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
752 753 754 755
    def init_adaptive(self):
        self.adaptive = True


756
# --- asy padding
C
cnn 已提交
757
class TestPool3D_Op_AsyPadding_channel_last(TestPool3D_Op_AsyPadding):
758 759 760 761
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
762
        self.shape = [1, 5, 5, 6, 3]
763 764 765 766 767 768 769


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
770
        self.shape = [1, 7, 6, 8, 3]
771 772 773 774 775 776 777


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
778
        self.shape = [1, 6, 8, 7, 3]
779 780 781 782 783 784 785


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
786
        self.shape = [1, 5, 7, 5, 3]
787 788 789 790 791 792 793


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
794
        self.shape = [1, 6, 7, 7, 3]
795 796 797 798 799 800 801


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
802
        self.shape = [1, 7, 8, 6, 3]
803 804


C
cnn 已提交
805
create_test_cudnn_class(TestPool3D_Op_AsyPadding_channel_last)
806 807 808 809 810 811
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

C
cnn 已提交
812
create_test_cudnn_use_ceil_class(TestPool3D_Op_AsyPadding_channel_last)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
838
        self.shape = [1, 7, 7, 7, 3]
839 840 841 842 843 844


#test padding = SAME VALID
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
845
            self.paddings = [0, 0, 0]
846 847 848 849 850 851 852
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


C
cnn 已提交
853
create_test_padding_SAME_class(TestPool3D_Op)
854 855 856 857 858 859
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

C
cnn 已提交
860
create_test_padding_SAME_class(TestPool3D_channel_last)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
876
            self.paddings = [1, 1, 1]
877 878 879 880 881 882 883
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


C
cnn 已提交
884
create_test_cudnn_padding_SAME_class(TestPool3D_Op)
885 886 887 888 889 890
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

C
cnn 已提交
891
create_test_cudnn_padding_SAME_class(TestPool3D_channel_last)
892 893 894 895 896 897 898 899 900 901
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
902
            self.paddings = [1, 1, 1]
903 904 905 906 907 908 909
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


C
cnn 已提交
910
create_test_padding_VALID_class(TestPool3D_Op)
911 912 913 914 915 916
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

C
cnn 已提交
917
create_test_padding_VALID_class(TestPool3D_channel_last)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
933
            self.paddings = [1, 1, 1]
934 935 936 937 938 939 940
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
941
create_test_cudnn_padding_VALID_class(TestPool3D_Op)
942 943 944 945 946 947
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

C
cnn 已提交
948
create_test_cudnn_padding_VALID_class(TestPool3D_channel_last)
949 950 951 952 953 954 955 956
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


#test API
C
cnn 已提交
957
class TestPool3DAPI(unittest.TestCase):
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    def test_api(self):
        x_NDHWC = np.random.random([2, 5, 5, 5, 3]).astype("float32")
        x_NCDHW = np.random.random([2, 3, 5, 5, 5]).astype("float32")

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        ksize = [3, 3, 3]
        out_1 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1, 1],
            use_cudnn=False,
            data_format="NDHWC")

        out_2 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NDHWC")

        out_3 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCDHW")

        out_4 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0, 0, 1],
            use_cudnn=False,
            data_format="NCDHW")
        # test VALID
        out_5 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NDHWC")

        out_6 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCDHW")

        # test SAME
        out_7 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
1027
            pool_stride=[1, 1, 2],
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NDHWC")

        out_8 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=[4, 4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCDHW")

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
            feed={"input_NDHWC": x_NDHWC,
                  "input_NCDHW": x_NCDHW},
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1, 1],
                paddings=[1, 1, 1],
                data_format="NDHWC"))

        assert np.allclose(
            res_2,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NDHWC"))
        assert np.allclose(
            res_3,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 2, 1, 0, 0, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # VALID
        assert np.allclose(
            res_5,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NDHWC"))

        assert np.allclose(
            res_6,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # SAME
        assert np.allclose(
            res_7,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
1123
                strides=[1, 1, 2],
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NDHWC"))

        assert np.allclose(
            res_8,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=[4, 4, 4],
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)


C
cnn 已提交
1142
class TestPool3DAPI_Error(unittest.TestCase):
1143 1144 1145 1146 1147 1148 1149 1150
    def test_api(self):
        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3, 3]

1151
        # cudnn type error
1152 1153 1154 1155 1156 1157 1158 1159 1160
        def run_1():
            out_1 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=[0],
                data_format="NDHWC")

1161
        self.assertRaises(TypeError, run_1)
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=False,
                data_format="NDHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1], [1, 1]],
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1213 1214
if __name__ == '__main__':
    unittest.main()