Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6115c14f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6115c14f
编写于
11月 02, 2020
作者:
L
Leo Chen
提交者:
GitHub
11月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Pool2d cuda kernel supports fp16 (#28316)
* pool2d cuda kernel supports fp16 * fix compile issue of template * add ut
上级
f41104ef
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
166 addition
and
52 deletion
+166
-52
paddle/fluid/operators/math/pooling.cu
paddle/fluid/operators/math/pooling.cu
+80
-41
paddle/fluid/operators/math/pooling.h
paddle/fluid/operators/math/pooling.h
+2
-1
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+2
-5
paddle/fluid/operators/pool_op.cu.cc
paddle/fluid/operators/pool_op.cu.cc
+12
-4
paddle/fluid/operators/pool_op.h
paddle/fluid/operators/pool_op.h
+2
-1
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+42
-0
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+26
-0
未找到文件。
paddle/fluid/operators/math/pooling.cu
浏览文件 @
6115c14f
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -126,7 +127,7 @@ __global__ void KernelPool2DGrad(
phend
=
min
(
h_offset
/
stride_height
+
1
,
output_height
);
pwend
=
min
(
w_offset
/
stride_width
+
1
,
output_width
);
}
T
gradient
=
0
;
T
gradient
=
static_cast
<
T
>
(
0.0
)
;
T
input
=
input_data
[
index
];
int
output_stride
;
...
...
@@ -264,12 +265,12 @@ void Pool2dDirectCUDAFunctor<PoolProcess, T>::operator()(
}
/*
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
template
<
typename
PoolProcess
,
typename
T
>
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
...
...
@@ -351,12 +352,12 @@ class Pool2dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
}
};
/*
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
template
<
typename
PoolProcess
,
typename
T
>
class
Pool2dGradFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
...
...
@@ -448,12 +449,12 @@ class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
};
/*
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
template
<
typename
T
>
class
MaxPool2dGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
...
...
@@ -549,6 +550,8 @@ template class Pool2dDirectCUDAFunctor<paddle::operators::math::AvgPool<float>,
template
class
MaxPool2dGradFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
MaxPool2dGradFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
MaxPool2dGradFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>;
template
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
float
>,
float
>
;
...
...
@@ -571,6 +574,23 @@ template class Pool2dGradFunctor<platform::CUDADeviceContext,
paddle
::
operators
::
math
::
AvgPoolGrad
<
double
>,
double
>
;
template
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
class
Pool2dGradFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPoolGrad
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
class
Pool2dGradFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
...
...
@@ -712,7 +732,7 @@ __global__ void KernelPool3DGrad(
pwend
=
min
((
w_offset
)
/
stride_width
+
1
,
output_width
);
}
T
gradient
=
0
;
T
gradient
=
static_cast
<
T
>
(
0.0
)
;
T
input
=
input_data
[
index
];
int
output_stride
;
...
...
@@ -848,13 +868,13 @@ __global__ void KernelMaxPool3DGrad(
}
/*
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
...
...
@@ -952,13 +972,13 @@ class Pool3dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
};
/*
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dGradFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
...
...
@@ -1064,13 +1084,13 @@ class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
};
/*
* tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
* tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
template
<
class
T
>
class
MaxPool3dGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
...
...
@@ -1174,6 +1194,8 @@ class MaxPool3dGradFunctor<platform::CUDADeviceContext, T> {
template
class
MaxPool3dGradFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
MaxPool3dGradFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
MaxPool3dGradFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>;
template
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
float
>,
float
>
;
...
...
@@ -1196,6 +1218,23 @@ template class Pool3dGradFunctor<platform::CUDADeviceContext,
paddle
::
operators
::
math
::
AvgPoolGrad
<
double
>,
double
>
;
template
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
class
Pool3dGradFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPoolGrad
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
class
Pool3dGradFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
paddle
::
platform
::
float16
>,
paddle
::
platform
::
float16
>
;
template
<
typename
T1
,
typename
T2
>
__global__
void
KernelMaxPool2dWithIdx
(
const
int
nthreads
,
const
T1
*
input_data
,
const
int
channels
,
...
...
paddle/fluid/operators/math/pooling.h
浏览文件 @
6115c14f
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
...
...
@@ -56,7 +57,7 @@ class MaxPoolGrad {
public:
DEVICE
inline
void
compute
(
const
T
&
x
,
const
T
&
y
,
const
T
&
dy
,
T
scale
,
T
*
dx
)
{
*
dx
+=
dy
*
(
x
==
y
);
*
dx
+=
dy
*
static_cast
<
T
>
(
x
==
y
);
}
};
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
6115c14f
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_op.h"
#include <unordered_map>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
...
...
@@ -219,11 +220,7 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
#endif
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
PADDLE_ENFORCE_EQ
(
library_
,
framework
::
LibraryType
::
kCUDNN
,
platform
::
errors
::
InvalidArgument
(
"Float16 can only be used when CUDNN is used"
));
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout_
,
library_
);
}
...
...
paddle/fluid/operators/pool_op.cu.cc
浏览文件 @
6115c14f
...
...
@@ -18,16 +18,24 @@ namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL
(
pool2d
,
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
pool2d_grad
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
pool3d
,
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
PoolKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
pool3d_grad
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/pool_op.h
浏览文件 @
6115c14f
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -257,7 +258,7 @@ class PoolGradKernel : public framework::OpKernel<T> {
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
paddle
::
operators
::
math
::
SetConstant
<
DeviceContext
,
T
>
set_constant
;
set_constant
(
dev_ctx
,
in_x_grad
,
0.0
);
set_constant
(
dev_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0.0
)
);
switch
(
ksize
.
size
())
{
case
2
:
{
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
6115c14f
...
...
@@ -475,6 +475,41 @@ def create_test_cudnn_fp16_class(parent, check_grad=True):
globals
()[
cls_name
]
=
TestCUDNNFp16Case
def
create_test_fp16_class
(
parent
,
check_grad
=
True
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFp16Case
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
False
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
)
and
self
.
pool_type
!=
"max"
and
check_grad
:
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16Op"
)
TestFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestFp16Case
create_test_cudnn_fp16_class
(
TestPool2D_Op
)
create_test_cudnn_fp16_class
(
TestCase1
,
check_grad
=
False
)
create_test_cudnn_fp16_class
(
TestCase2
)
...
...
@@ -482,6 +517,13 @@ create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class
(
TestCase4
)
create_test_cudnn_fp16_class
(
TestCase5
)
create_test_fp16_class
(
TestPool2D_Op
)
create_test_fp16_class
(
TestCase1
,
check_grad
=
False
)
create_test_fp16_class
(
TestCase2
)
create_test_fp16_class
(
TestCase3
)
create_test_fp16_class
(
TestCase4
)
create_test_fp16_class
(
TestCase5
)
#--------------------test pool2d use ceil mode--------------------
...
...
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
6115c14f
...
...
@@ -405,6 +405,25 @@ def create_test_cudnn_fp16_class(parent):
globals
()[
cls_name
]
=
TestCUDNNFp16Case
def
create_test_fp16_class
(
parent
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFp16Case
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
False
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-2
)
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16Op"
)
TestFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestFp16Case
create_test_cudnn_fp16_class
(
TestPool3D_Op
)
create_test_cudnn_fp16_class
(
TestCase1
)
create_test_cudnn_fp16_class
(
TestCase2
)
...
...
@@ -412,6 +431,13 @@ create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class
(
TestCase4
)
create_test_cudnn_fp16_class
(
TestCase5
)
create_test_fp16_class
(
TestPool3D_Op
)
create_test_fp16_class
(
TestCase1
)
create_test_fp16_class
(
TestCase2
)
create_test_fp16_class
(
TestCase3
)
create_test_fp16_class
(
TestCase4
)
create_test_fp16_class
(
TestCase5
)
# ---- test ceil mode ------
def
create_test_cudnn_use_ceil_class
(
parent
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录