test_pool3d_op.py 36.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
22
from op_test import OpTest
23
import paddle.fluid as fluid
C
chengduoZH 已提交
24 25


26 27 28 29 30 31 32 33
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def pool3D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCDHW',
                         pool_type='max',
                         padding_algorithm="EXPLICIT"):
    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCDHW":
                input_data_shape = x.shape[2:5]
            elif data_format == "NDHWC":
                input_data_shape = x.shape[1:4]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 3 or len(paddings) == 6
    is_sys = True if len(paddings) == 3 else False

    N = x.shape[0]
    C,D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

C
chengduoZH 已提交
88 89
    if global_pool == 1:
        ksize = [D, H, W]
90 91 92 93 94 95 96 97 98
        paddings = [0 for _ in range(len(paddings))]

    pad_d_forth = paddings[0] if is_sys else paddings[0]
    pad_d_back = paddings[0] if is_sys else paddings[1]
    pad_h_up = paddings[1] if is_sys else paddings[2]
    pad_h_down = paddings[1] if is_sys else paddings[3]
    pad_w_left = paddings[2] if is_sys else paddings[4]
    pad_w_right = paddings[2] if is_sys else paddings[5]

99 100 101
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
102 103 104 105 106 107 108 109 110 111 112 113 114

        D_out = (D - ksize[0] + pad_d_forth+pad_d_back + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode  else (D - ksize[0] + pad_d_forth+pad_d_back) // strides[0] + 1

        H_out = (H - ksize[1] + pad_h_up + pad_h_down + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (H - ksize[1] + pad_h_up + pad_h_down) // strides[1] + 1

        W_out = (W - ksize[2] + pad_w_left + pad_w_right + strides[2] - 1) // strides[2] + 1 \
            if ceil_mode else (W - ksize[2] + pad_w_left + pad_w_right) // strides[2] + 1


    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
115
    for k in range(D_out):
116 117 118
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
119

120
        for i in range(H_out):
121 122 123
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
124

125
            for j in range(W_out):
126 127 128 129
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
130

D
Double_V 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                    d_start = k * strides[0] - pad_d_forth
                    d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth,
                                    D + pad_d_back))
                    h_start = i * strides[1] - pad_h_up
                    h_end = np.min(
                        (i * strides[1] + ksize[1] - pad_h_up, H + pad_h_down))
                    w_start = j * strides[2] - pad_w_left
                    w_end = np.min((j * strides[2] + ksize[2] - pad_w_left,
                                    W + pad_w_right))

                    field_size = (d_end - d_start) * (h_end - h_start) * (
                        w_end - w_start)
                    w_start = np.max((w_start, 0))
                    d_start = np.max((d_start, 0))
                    h_start = np.max((h_start, 0))
                    w_end = np.min((w_end, W))
                    d_end = np.min((d_end, D))
                    h_end = np.min((h_end, H))
149 150 151 152
                if data_format == 'NCDHW':
                    x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
                                 w_end]
                    if pool_type == 'avg':
D
Double_V 已提交
153 154 155 156
                        if (exclusive or adaptive):
                            field_size = (d_end - d_start) * (
                                h_end - h_start) * (w_end - w_start)

157 158 159 160 161 162 163 164 165
                        out[:, :, k, i, j] = np.sum(x_masked,
                                                    axis=(2, 3, 4)) / field_size
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
                    x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
                                 w_end, :]
                    if pool_type == 'avg':
D
Double_V 已提交
166 167 168 169
                        if (exclusive or adaptive):
                            field_size = (d_end - d_start) * (
                                h_end - h_start) * (w_end - w_start)

170 171 172 173
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
C
chengduoZH 已提交
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    return out


def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False):
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="max")
C
chengduoZH 已提交
197 198 199
    return out


200 201 202 203 204
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
205
                             ceil_mode=False,
206 207
                             exclusive=True,
                             adaptive=False):
208 209 210 211 212 213 214 215 216 217 218
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="avg")
C
chengduoZH 已提交
219 220 221
    return out


C
cnn 已提交
222
class TestPool3D_Op(OpTest):
C
chengduoZH 已提交
223
    def setUp(self):
K
Kexin Zhao 已提交
224
        self.op_type = "pool3d"
225
        self.init_kernel_type()
226
        self.dtype = np.float64
C
fix bug  
chengduoZH 已提交
227
        self.init_test_case()
228 229
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
230
        self.init_global_pool()
K
Kexin Zhao 已提交
231
        self.init_kernel_type()
C
chengduoZH 已提交
232
        self.init_pool_type()
233
        self.init_ceil_mode()
234
        self.init_exclusive()
235
        self.init_adaptive()
236 237
        self.init_data_format()
        self.init_shape()
C
chengduoZH 已提交
238

K
Kexin Zhao 已提交
239
        input = np.random.random(self.shape).astype(self.dtype)
240
        output = pool3D_forward_naive(
241
            input, self.ksize, self.strides, self.paddings, self.global_pool,
242
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
243
            self.pool_type, self.padding_algorithm).astype(self.dtype)
244

K
Kexin Zhao 已提交
245
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
246 247 248 249 250

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
251 252
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
253
            'use_cudnn': self.use_cudnn,
254
            'ceil_mode': self.ceil_mode,
255
            'data_format': self.data_format,
256
            'exclusive': self.exclusive,
257 258
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
259 260
        }

K
Kexin Zhao 已提交
261
        self.outputs = {'Out': output}
C
chengduoZH 已提交
262

263
    def has_cudnn(self):
264 265
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
266
    def test_check_output(self):
267
        if self.has_cudnn():
268 269 270 271
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
272 273

    def test_check_grad(self):
K
Kexin Zhao 已提交
274 275
        if self.dtype == np.float16:
            return
276
        if self.has_cudnn() and self.pool_type != "max":
277
            place = core.CUDAPlace(0)
278
            self.check_grad_with_place(place, set(['X']), 'Out')
279
        elif self.pool_type != "max":
280
            self.check_grad(set(['X']), 'Out')
C
chengduoZH 已提交
281

282 283 284 285
    def init_data_format(self):
        self.data_format = "NCDHW"

    def init_shape(self):
286
        self.shape = [2, 3, 5, 6, 5]
287 288

    def init_test_case(self):
289 290 291 292
        self.ksize = [2, 3, 1]
        self.strides = [2, 2, 3]

    def init_paddings(self):
C
chengduoZH 已提交
293
        self.paddings = [0, 0, 0]
294
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
295

K
Kexin Zhao 已提交
296
    def init_kernel_type(self):
297
        self.use_cudnn = False
C
chengduoZH 已提交
298 299 300 301 302 303 304

    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = True

305 306 307
    def init_ceil_mode(self):
        self.ceil_mode = False

308
    def init_exclusive(self):
309
        self.exclusive = True
310

311 312 313
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
314

C
cnn 已提交
315
class TestCase1(TestPool3D_Op):
316
    def init_shape(self):
C
chengduoZH 已提交
317
        self.shape = [2, 3, 7, 7, 7]
318 319

    def init_test_case(self):
C
chengduoZH 已提交
320 321
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
322 323

    def init_paddings(self):
C
chengduoZH 已提交
324
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
325

C
chengduoZH 已提交
326
    def init_pool_type(self):
C
chengduoZH 已提交
327
        self.pool_type = "avg"
C
chengduoZH 已提交
328 329 330 331 332

    def init_global_pool(self):
        self.global_pool = False


C
cnn 已提交
333
class TestCase2(TestPool3D_Op):
334
    def init_shape(self):
335
        self.shape = [2, 3, 6, 7, 7]
336 337

    def init_test_case(self):
338 339 340 341
        self.ksize = [3, 3, 4]
        self.strides = [1, 3, 2]

    def init_paddings(self):
C
chengduoZH 已提交
342 343
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
344 345 346 347 348 349
    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
350

C
cnn 已提交
351
class TestCase3(TestPool3D_Op):
C
chengduoZH 已提交
352
    def init_pool_type(self):
C
chengduoZH 已提交
353 354 355
        self.pool_type = "max"


C
chengduoZH 已提交
356 357
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
358
        self.pool_type = "max"
C
chengduoZH 已提交
359 360


C
chengduoZH 已提交
361 362
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
363
        self.pool_type = "max"
C
chengduoZH 已提交
364 365


366
#--------------------test pool3d cudnn--------------------
K
Kexin Zhao 已提交
367 368


369 370 371 372 373 374
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
375

376 377 378
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
C
chengduoZH 已提交
379 380


C
cnn 已提交
381
create_test_cudnn_class(TestPool3D_Op)
382 383 384 385 386
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
K
Kexin Zhao 已提交
387 388


389 390 391 392 393 394 395
def create_test_cudnn_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
396

397 398 399 400 401
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
402

403 404 405
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
C
chengduoZH 已提交
406

K
Kexin Zhao 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
def create_test_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = False
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-2)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestFp16Case.__name__ = cls_name
    globals()[cls_name] = TestFp16Case


C
cnn 已提交
427
create_test_cudnn_fp16_class(TestPool3D_Op)
428 429 430 431 432
create_test_cudnn_fp16_class(TestCase1)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
433 434 435 436 437 438 439

create_test_fp16_class(TestPool3D_Op)
create_test_fp16_class(TestCase1)
create_test_fp16_class(TestCase2)
create_test_fp16_class(TestCase3)
create_test_fp16_class(TestCase4)
create_test_fp16_class(TestCase5)
K
Kexin Zhao 已提交
440 441


442 443 444 445 446 447 448
# ---- test ceil mode ------
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool3DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
C
chengduoZH 已提交
449

450 451
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
452

453 454 455
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
456 457


C
cnn 已提交
458
create_test_cudnn_use_ceil_class(TestPool3D_Op)
459
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
460

C
chengduoZH 已提交
461

462 463 464 465
def create_test_use_ceil_class(parent):
    class TestPool3DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
466

467 468 469
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
470 471


472 473
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
K
Kexin Zhao 已提交
474

475 476 477 478

class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
479 480


481 482 483
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude(TestCase2):
K
Kexin Zhao 已提交
484
    def init_kernel_type(self):
485
        self.use_cudnn = True
K
Kexin Zhao 已提交
486

487 488 489 490 491 492 493 494 495
    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


496 497 498 499 500 501 502 503 504 505 506 507
class TestAvgPoolAdaptiveAsyOutSize(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_shape(self):
        self.shape = [8, 3, 2, 4, 4]

    def init_test_case(self):
        self.ksize = [2, 2, 3]
        self.strides = [1, 1, 1]


508
#-------test pool3d with asymmetric padding------
C
cnn 已提交
509
class TestPool3D_Op_AsyPadding(TestPool3D_Op):
510
    def init_test_case(self):
511 512 513 514
        self.ksize = [3, 4, 3]
        self.strides = [1, 1, 2]

    def init_paddings(self):
515 516 517
        self.paddings = [0, 0, 0, 2, 3, 0]

    def init_shape(self):
518
        self.shape = [2, 3, 5, 5, 6]
519 520 521 522


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
523 524 525 526
        self.ksize = [3, 3, 4]
        self.strides = [1, 1, 2]

    def init_paddings(self):
527 528 529
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
530
        self.shape = [2, 3, 7, 7, 6]
531 532 533 534 535 536


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
537 538

    def init_paddings(self):
539 540 541 542 543 544 545 546 547 548
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
549 550

    def init_paddings(self):
551 552 553 554
        self.paddings = [1, 0, 0, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]
K
Kexin Zhao 已提交
555

556 557 558 559 560

class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
561 562

    def init_paddings(self):
563 564 565 566 567 568 569 570 571 572
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase5_AsyPadding(TestCase5):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
573 574

    def init_paddings(self):
575 576 577 578 579 580
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


C
cnn 已提交
581
create_test_cudnn_class(TestPool3D_Op_AsyPadding)
582 583 584 585 586 587
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

C
cnn 已提交
588
create_test_cudnn_fp16_class(TestPool3D_Op_AsyPadding)
589 590 591 592 593 594
create_test_cudnn_fp16_class(TestCase1_AsyPadding)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

C
cnn 已提交
595
create_test_cudnn_use_ceil_class(TestPool3D_Op_AsyPadding)
596 597 598 599 600 601 602 603 604 605
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

606
    def init_paddings(self):
D
Double_V 已提交
607
        self.paddings = [2, 2, 1, 1, 0, 0]
608 609 610 611 612


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding(TestCase2):
K
Kexin Zhao 已提交
613 614 615
    def init_kernel_type(self):
        self.use_cudnn = True

616 617
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
618

619
    def init_paddings(self):
620
        self.paddings = [1, 0, 0, 0, 0, 0]
C
chengduoZH 已提交
621

622 623
    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]
624 625


626 627 628
class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True
629

630
    def init_paddings(self):
631
        self.paddings = [1, 0, 2, 1, 2, 1]
632 633


634
# ------------ test channel_last --------------
C
cnn 已提交
635
class TestPool3D_channel_last(TestPool3D_Op):
636 637
    def init_data_format(self):
        self.data_format = "NDHWC"
638

639
    def init_shape(self):
640
        self.shape = [2, 5, 5, 6, 3]
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655

class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
656
        self.shape = [2, 7, 7, 5, 3]
657 658 659 660 661 662 663


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
664
        self.shape = [2, 5, 6, 5, 3]
665 666 667 668 669 670 671


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
672
        self.shape = [2, 7, 6, 7, 3]
673 674 675 676 677 678 679 680 681 682


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


C
cnn 已提交
683
create_test_cudnn_class(TestPool3D_channel_last)
684 685 686 687 688 689
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

C
cnn 已提交
690
create_test_cudnn_use_ceil_class(TestPool3D_channel_last)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
725 726 727
    def init_exclusive(self):
        self.exclusive = False

728

729 730 731 732 733 734
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

735 736 737
    def init_exclusive(self):
        self.exclusive = False

738

739
class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
740 741 742 743
    def init_adaptive(self):
        self.adaptive = True


744
# --- asy padding
C
cnn 已提交
745
class TestPool3D_Op_AsyPadding_channel_last(TestPool3D_Op_AsyPadding):
746 747 748 749
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
750
        self.shape = [2, 5, 5, 6, 3]
751 752 753 754 755 756 757


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
758
        self.shape = [2, 7, 6, 8, 3]
759 760 761 762 763 764 765


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
766
        self.shape = [2, 6, 8, 7, 3]
767 768 769 770 771 772 773


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
774
        self.shape = [2, 5, 7, 5, 3]
775 776 777 778 779 780 781


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
782
        self.shape = [2, 6, 7, 7, 3]
783 784 785 786 787 788 789


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
790
        self.shape = [2, 7, 8, 6, 3]
791 792


C
cnn 已提交
793
create_test_cudnn_class(TestPool3D_Op_AsyPadding_channel_last)
794 795 796 797 798 799
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

C
cnn 已提交
800
create_test_cudnn_use_ceil_class(TestPool3D_Op_AsyPadding_channel_last)
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


#test padding = SAME VALID
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
833
            self.paddings = [0, 0, 0]
834 835 836 837 838 839 840
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


C
cnn 已提交
841
create_test_padding_SAME_class(TestPool3D_Op)
842 843 844 845 846 847
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

C
cnn 已提交
848
create_test_padding_SAME_class(TestPool3D_channel_last)
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
864
            self.paddings = [1, 1, 1]
865 866 867 868 869 870 871
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


C
cnn 已提交
872
create_test_cudnn_padding_SAME_class(TestPool3D_Op)
873 874 875 876 877 878
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

C
cnn 已提交
879
create_test_cudnn_padding_SAME_class(TestPool3D_channel_last)
880 881 882 883 884 885 886 887 888 889
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
890
            self.paddings = [1, 1, 1]
891 892 893 894 895 896 897
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


C
cnn 已提交
898
create_test_padding_VALID_class(TestPool3D_Op)
899 900 901 902 903 904
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

C
cnn 已提交
905
create_test_padding_VALID_class(TestPool3D_channel_last)
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
921
            self.paddings = [1, 1, 1]
922 923 924 925 926 927 928
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
929
create_test_cudnn_padding_VALID_class(TestPool3D_Op)
930 931 932 933 934 935
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

C
cnn 已提交
936
create_test_cudnn_padding_VALID_class(TestPool3D_channel_last)
937 938 939 940 941 942 943 944
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


#test API
C
cnn 已提交
945
class TestPool3DAPI(unittest.TestCase):
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def test_api(self):
        x_NDHWC = np.random.random([2, 5, 5, 5, 3]).astype("float32")
        x_NCDHW = np.random.random([2, 3, 5, 5, 5]).astype("float32")

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        ksize = [3, 3, 3]
        out_1 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1, 1],
            use_cudnn=False,
            data_format="NDHWC")

        out_2 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NDHWC")

        out_3 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCDHW")

        out_4 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0, 0, 1],
            use_cudnn=False,
            data_format="NCDHW")
        # test VALID
        out_5 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NDHWC")

        out_6 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCDHW")

        # test SAME
        out_7 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
1015
            pool_stride=[1, 1, 2],
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NDHWC")

        out_8 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=[4, 4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCDHW")

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
            feed={"input_NDHWC": x_NDHWC,
                  "input_NCDHW": x_NCDHW},
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1, 1],
                paddings=[1, 1, 1],
                data_format="NDHWC"))

        assert np.allclose(
            res_2,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NDHWC"))
        assert np.allclose(
            res_3,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 2, 1, 0, 0, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # VALID
        assert np.allclose(
            res_5,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NDHWC"))

        assert np.allclose(
            res_6,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # SAME
        assert np.allclose(
            res_7,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
1111
                strides=[1, 1, 2],
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NDHWC"))

        assert np.allclose(
            res_8,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=[4, 4, 4],
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)


C
cnn 已提交
1130
class TestPool3DAPI_Error(unittest.TestCase):
1131 1132 1133 1134 1135 1136 1137 1138
    def test_api(self):
        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3, 3]

1139
        # cudnn type error
1140 1141 1142 1143 1144 1145 1146 1147 1148
        def run_1():
            out_1 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=[0],
                data_format="NDHWC")

1149
        self.assertRaises(TypeError, run_1)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=False,
                data_format="NDHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1], [1, 1]],
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1201 1202
if __name__ == '__main__':
    unittest.main()